Approximate Bi-Additive Mappings in Intuitionistic Fuzzy Normed Spaces

Javad Shokri

Department of Mathematics, Urmia University, P.O.Box 165, Urmia, Iran
e-mail : j.shokri@urmia.ac.ir

Abstract : In this paper, we determine some stability results concerning a 2-dimensional vector variable bi-additive functional equation in intuitionistic fuzzy normed spaces (IFNS). We generalize the intuitionistic fuzzy continuity to the bi-additive mappings and we prove that the existence of a solution for any approximately bi-additive mapping implies the completeness of IFNS.

Keywords : intuitionistic fuzzy normed spaces; generalized Ulam-Rassias stability; functional equations.

2010 Mathematics Subject Classification : 94D05; 39B82.

1 Introduction

In recent years, the fuzzy theory has emerged as the most active area of research in many branches of mathematics and engineering. This new theory was introduced by Zadeh [1], in 1965 and since then a large number of research papers have appeared by using the concept of fuzzy set/numbers and fuzzification of many classical theories has also been made. It has also very useful application in various fields, e.g. population dynamics [2], chaos control [3], computer programming [4], nonlinear dynamical systems [5], fuzzy physics [6], fuzzy topology [7], fuzzy stability [8][12], nonlinear operators [13], statistical convergence [14][15], etc.

The concept of intuitionistic fuzzy normed spaces, initially has been introduced by Saadati and Park [16]. In [17], by modifying the separation condition and strengthening some conditions in the definition of Saadati and Park, Saadati et al. have obtained a modified case of intuitionistic fuzzy normed spaces. Many authors have
considered the intuitionistic fuzzy normed linear spaces, and intuitionistic fuzzy 2-normed spaces (see [18–21]).

Let X be a real linear space. A function $N : X \times \mathbb{R} \to [0, 1]$ (the so-called fuzzy subset) is said to be a fuzzy norm on X if for all $x, y \in X$ and all $s, t \in \mathbb{R}$,

(N1) $N(x, c) = 0$ for $c \leq 0$;
(N2) $x = 0$ if and only if $N(x, c) = 1$ for all $c > 0$;
(N3) $N(cx, t) = N(x, \frac{t}{|c|})$ if $c \neq 0$;
(N4) $N(x + y, s + t) \geq \min\{N(x, s), N(y, t)\}$;
(N5) $N(x, \cdot)$ is a non-decreasing function on \mathbb{R} and $\lim_{t \to \infty} N(x, t) = 1$;
(N6) For $x \neq 0$, $N(x, \cdot)$ is continuous on \mathbb{R}.

The pair (X, N) is called a fuzzy normed linear space. One may regard $N(x, t)$ as the truth value of the statement the norm of x is less than or equal to the real number t.

The concept of stability of a functional equation arises when one replaces a functional equation by an inequality which acts as a perturbation of the equation. The first stability problem concerning group homomorphisms was raised by Ulam [22] in 1940 and affirmatively solved by Hyers [23]. The result of Hyers was generalized by Aoki [24] for approximate additive function and by Rassias [25] for approximate linear functions by allowing the difference Cauchy equation $\|f(x_1 + x_2) - f(x_1) - f(x_2)\|$ to be controlled by $\varepsilon(\|x_1\|^p + \|x_2\|^p)$. Taking into consideration a lot of influence of Ulam, Hyers and Rassias on the development of stability problems of functional equations, the stability phenomenon that was proved by Rassias is called the generalized Ulam-Rassias stability or Hyers-Ulam-Rassias stability (see [26–28]). In 1994, a generalization of Rassias theorem was obtained by Gavruta [29], who replaced $\varepsilon(\|x_1\|^p + \|x_2\|^p)$ by a general control function $\varphi(x_1, x_2)$.

The stability problem for the 2-dimensional vector variable bi-additive functional equation was proved by the authors [30] for mappings $f : X \times X \to Y$, where X is a real normed space and Y is a Banach space. In this paper, we determine some stability results concerning the 2-dimensional vector variable bi-additive functional equation

$$f(x + y, z - w) + f(x - y, z + w) = 2f(x, z) - 2f(y, w) \quad (1.1)$$

in intuitionistic fuzzy normed spaces. We apply the intuitionistic fuzzy continuity of the 2-dimensional vector variable bi-additive mappings and prove that the existence of a solution for any approximately 2-dimensional vector variable bi-additive mapping implies the completeness of intuitionistic fuzzy normed spaces (IFNS). It has shown that each mapping satisfies in (1.1) is C-bilinear (see [31]).

In the following section, we recall some notations and basic definitions used in this paper.
2 Preliminaries

We use the definition of intuitionistic fuzzy normed spaces given in [16, 32, 33] to investigate some stability results for the functional equation (1.1) in the intuitionistic fuzzy normed vector space setting.

Definition 2.1 ([34]). A binary operation \(\ast : [0, 1] \times [0, 1] \rightarrow [0, 1] \) is said to be a \textit{continuous t-norm} if it satisfies the following conditions:

(a) is commutative and associative;
(b) is continuous;
(c) \(a \ast 1 = a \) for all \(a \in [0, 1] \);
(d) \(a \ast b \leq c \ast d \) whenever \(a \leq c \) and \(b \leq d \) for all \(a, b, c, d \in [0, 1] \).

Definition 2.2 ([34]). A binary operation \(\circ : [0, 1] \times [0, 1] \rightarrow [0, 1] \) is said to be a \textit{continuous t-conorm} if it satisfies the following conditions:

(a) is commutative and associative;
(b) is continuous;
(c) \(a \circ 0 = a \) for all \(a \in [0, 1] \);
(d) \(a \circ b \leq c \circ d \) whenever \(a \leq c \) and \(b \leq d \) for all \(a, b, c, d \in [0, 1] \).

Using the continuous t-norm and t-conorm, Saadati and Park [16], have introduced the concept of intuitionistic fuzzy normed space.

Definition 2.3 ([10, 32]). The five-tuple \((X, \mu, \nu, \ast, \circ) \) is said to be an \textit{intuitionistic fuzzy normed space} (for short, IFNS) if \(X \) is a vector space, \(\ast \) is a continuous t-norm, \(\circ \) is a continuous t-conorm, and \(\mu, \nu \) fuzzy sets on \(X \times (0, \infty) \) satisfying the following conditions: For every \(x, y \in X \) and \(s, t > 0 \),

\[
\begin{align*}
(\text{IF}_1) \quad & \mu(x, t) + \nu(x, t) \leq 1; \\
(\text{IF}_2) \quad & \mu(x, t) > 0; \\
(\text{IF}_3) \quad & \mu(x, t) = 1 \text{ if and only if } x = 0; \\
(\text{IF}_4) \quad & \mu(\alpha x, t) = \mu(x, \frac{t}{|\alpha|}) \text{ for each } \alpha \neq 0; \\
(\text{IF}_5) \quad & \mu(x, t) \ast \mu(y, s) \leq \mu(x + y, t + s); \\
(\text{IF}_6) \quad & \mu(x, .) : (0, \infty) \rightarrow [0, 1] \text{ is continuous}; \\
(\text{IF}_7) \quad & \lim_{t \to \infty} \mu(x, t) = 1 \text{ and } \lim_{t \to 0} \mu(x, t) = 0; \\
(\text{IF}_8) \quad & \nu(x, t) < 1; \\
(\text{IF}_9) \quad & \nu(x, t) = 0 \text{ if and only if } x = 0; \\
(\text{IF}_{10}) \quad & \nu(\alpha x, t) = \nu(x, \frac{t}{|\alpha|}) \text{ for each } \alpha \neq 0; \\
(\text{IF}_{11}) \quad & \nu(x, t) \circ \nu(y, s) \geq \nu(x + y, t + s); \\
(\text{IF}_{12}) \quad & \nu(x, .) : (0, 1) \rightarrow [0, 1] \text{ is continuous}; \\
(\text{IF}_{13}) \quad & \lim_{t \to \infty} \nu(x, t) = 0 \text{ and } \lim_{t \to 0} \nu(x, t) = 1.
\end{align*}
\]

Example 2.4. Let \((X, \|\|) \) be a normed space, \(a \ast b = ab \) and \(a \circ b = \min\{a + b, 1\} \) for all \(a, b \in [0, 1] \). For all \(x \in X \) and every \(t > 0 \), consider

\[
\mu(x, t) = \begin{cases}
\frac{t}{\|x\|} & \text{if } t > 0 \\
0 & \text{if } t \leq 0
\end{cases}
\]

and

\[
\nu(x, t) = \begin{cases}
\frac{\|x\|}{t} & \text{if } t > 0 \\
0 & \text{if } t \leq 0.
\end{cases}
\]
Then \((X, \mu, \nu, *, \circ)\) is an IFNS.

Remark 2.5. In intuitionistic fuzzy normed space \((X, \mu, \nu, *, \circ)\), \(\mu(x, .)\) is non-decreasing and \(\nu(x, .)\) is non-increasing for all \(x \in X\) (see [16]).

Definition 2.6. Let \((X, \mu, \nu, *, \circ)\) be an IFNS. A sequence \(\{x_n\}\) is said to be intuitionistic fuzzy convergent to \(L \in X\) if \(\lim_{k \to \infty} \mu(x_k - L, t) = 1\) and \(\lim_{k \to \infty} \nu(x_k - L, t) = 0\) for all \(t > 0\). In this case we write \(x_k \to L\) as \(k \to \infty\). A sequence \(\{x_n\}\) is said to be intuitionistic fuzzy Cauchy sequence if \(\lim_{k \to \infty} \mu(x_k + p - x_k, t) = 1\) and \(\lim_{k \to \infty} \nu(x_k + p - x_k, t) = 0\) for all \(p \in \mathbb{N}\) and all \(t > 0\). Then IFNS \((X, \mu, \nu, *, \circ)\) is said to be complete if every intuitionistic fuzzy Cauchy sequence in \((X, \mu, \nu, *, \circ)\) intuitionistic fuzzy convergent in \((X, \mu, \nu, *, \circ)\) and \((X, \mu, \nu, *, \circ)\) is also called an intuitionistic fuzzy Banach space.

The concepts of convergence and Cauchy sequences in an intuitionistic fuzzy normed space are studied in [16].

3 Intuitionistic Fuzzy Stability

For notational convenience, given a function \(f : X \times X \to Y\), we define the difference operator

\[
D_b f(x, y, z, w) = f(x + y, z - w) + f(x - y, z + w) - 2f(x, z) + 2f(y, w).
\]

We begin with a generalized Hyers-Ulam type theorem in IFNS for the functional equation (1.1).

Theorem 3.1. Let \(X\) be a linear space and let \((Z, \mu', \nu, \cdot)\) be an IFNS. Let \(\varphi : X \times X \times X \times X \to Z\) be a mapping such that, for some \(0 < \alpha < 4\).

\[
\begin{align*}
\mu'(\varphi(2x, 2y, 2z, 2w), t) & \geq \mu'(\alpha \varphi(x, y, z, w), t), \\
\nu'(\varphi(2x, 2y, 2z, 2w), t) & \leq \nu'(\alpha \varphi(x, y, z, w), t),
\end{align*}
\]

for all \(x, y, z, w \in X\) and all \(t > 0\). Let \((Y, \mu, \nu)\) be an intuitionistic fuzzy Banach space and let \(f : X \times X \to Y\) be a mapping such that

\[
\begin{align*}
\mu(D_b f(x, y, z, w), t) & \geq \mu'(\varphi(x, y, z, w), t), \\
\nu(D_b f(x, y, z, w), t) & \leq \nu'(\varphi(x, y, z, w), t)
\end{align*}
\]

for all \(x, y, z, w \in X\) and all \(t > 0\). Then there exists a unique mapping \(F :\)
Approximate Bi-Additive Mappings in Intuitionistic Fuzzy Normed Spaces

\(X \times X \to Y \) satisfying (4.4) such that

\[
\begin{align*}
\mu \left(F(x, y) - f(x, y) + \frac{1}{3} f(0, 0), t \right) \\
\geq *\mu' \left(\varphi(x, x, y, y), \frac{(4-\alpha)}{8} t \right), \\
\mu(0, 0, y, y), \frac{(4-\alpha)}{8} t), \\
\nu \left(F(x, y) - f(x, y) + \frac{1}{3} f(0, 0), t \right) \\
\leq o\nu' \left(\varphi(x, x, y, y), \frac{(4-\alpha)}{8} t \right), \\
o\nu'(0, 0, y, y), \frac{(4-\alpha)}{8} t)
\end{align*}
\]

for all \(x, y, z, w \in X \) and all \(t > 0 \), where \(*\mu := a * a * \cdots \) and \(o\nu := a \circ a \circ \cdots \)
for all \(a \in [0, 1] \).

Proof. Put \(y = -x \) and \(w = z \) in (3.2) to obtain

\[
\begin{align*}
\mu(f(2x, 2z) - 2f(x, z) - 2f(0, 0), t) & \geq \mu'(\varphi(x, x, z, z), t), \\
\nu(f(2x, 2z) - 2f(x, z) - 2f(0, 0), t) & \leq \nu'(\varphi(x, x, z, z), t)
\end{align*}
\]

for all \(x, z \in X \) and all \(t > 0 \). Let \(z = z = 0 \) in (3.2), we get

\[
\begin{align*}
\mu(f(y, -w) + f(0, 0), t) & \geq \mu'\left(\varphi(0, y, 0, w), t \right), \\
\nu(f(y, -w) + f(0, 0), t) & \leq \nu'(\varphi(0, y, 0, w), t)
\end{align*}
\]

for all \(y, w \in X \) and all \(t > 0 \). Replacing \(y \) by \(x \) and \(w \) by \(z \) in (3.3), we get

\[
\begin{align*}
\mu(f(x, -z) + f(0, 0), t) & \geq \mu'\left(\varphi(0, x, 0, z), t \right), \\
\nu(f(x, -z) + f(0, 0), t) & \leq \nu'(\varphi(0, x, 0, z), t)
\end{align*}
\]

for all \(x, z \in X \) and all \(t > 0 \). Putting \(x = y \) and \(w = -z \) in (3.2), we obtain

\[
\begin{align*}
\mu(f(2x, 2z) - 2f(x, -z) + f(0, 0), t) & \geq \mu'(\varphi(x, x, z, -z), t), \\
\nu(f(2x, 2z) - 2f(x, -z) + f(0, 0), t) & \leq \nu'(\varphi(x, x, z, -z), t)
\end{align*}
\]

for all \(x, z \in X \) and all \(t > 0 \). By inequalities (4.4) and (4.7), we get

\[
\begin{align*}
\mu(2f(-x, z) - 2f(x, z) + f(0, 0), t) & \geq \mu'(\varphi(x, x, z, -z), t), \\
\nu(2f(-x, z) - 2f(x, z) + f(0, 0), t) & \leq \nu'(\varphi(x, x, z, -z), t)
\end{align*}
\]

for all \(x, z \in X \) and all \(t > 0 \). And from (3.8), we can write

\[
\begin{align*}
\mu(f(-x, z) - f(x, -z) + f(0, 0), t) & \geq \mu'(\varphi(x, x, z, -z), t), \\
\nu(f(-x, z) - f(x, -z) + f(0, 0), t) & \leq \nu'(\varphi(x, x, z, -z), t)
\end{align*}
\]
for all \(x, z \in X \) and all \(t > 0 \). By \((3.9)\) and \((3.10)\), we have

\[
\begin{align*}
\mu(f(2x, 2z) - 4f(x, z) + f(x, -z) - f(-x, z) + 3f(0, 0), t) & \geq \mu'((\varphi(x, x, z, -z), \frac{t}{8})) \circ \mu'((\varphi(0, x, 0, z), \frac{t}{8})), \\
\nu(f(2x, 2z) - 4f(x, z) + f(x, -z) - f(-x, z) + 3f(0, 0), t) & \leq \nu'((\varphi(x, x, z, -z), \frac{t}{8})) \circ \nu'((\varphi(0, x, 0, z), \frac{t}{8})).
\end{align*}
\]

(3.10)

for all \(x, z \in X \) and all \(t > 0 \). From \((3.9)\) and \((3.10)\), we get

\[
\begin{align*}
\mu(f(2x, 2z) - 4f(x, z) + 4f(0, 0), t) & \geq \mu'(2\varphi(x, x, z, -z), \frac{t}{4}) \circ \mu'(\varphi(x, x, z, -z), \frac{t}{4}) \\
& \circ \mu'(\varphi(x, -x, x, z), \frac{t}{4}) \circ \mu'(\varphi(0, x, 0, z), t) \\
& \geq \mu'(\varphi(x, x, z, -z), \frac{t}{8}) \circ \mu'(\varphi(x, x, z, -z), \frac{t}{8}) \\
& \circ \mu'(\varphi(x, -x, z, z), \frac{t}{8}) \circ \mu'(\varphi(0, x, 0, z), \frac{t}{8}) \\
& = \mu'(\varphi(x, x, z, -z), \frac{t}{8}) \circ \mu'(\varphi(x, -x, z, z), \frac{t}{8}) \circ \mu'(\varphi(0, x, 0, z), \frac{t}{8}),
\end{align*}
\]

and also

\[
\begin{align*}
\nu(f(2x, 2z) - 4f(x, z) + 4f(0, 0), t) & \leq \nu'(\varphi(x, x, z, -z), \frac{t}{2}) \circ \nu'((\varphi(x, x, z, z), \frac{t}{2}) \circ \nu'((\varphi(0, x, 0, z), \frac{t}{2})
\end{align*}
\]

for all \(x, z \in X \) and all \(t > 0 \). We can write above inequalities as following

\[
\begin{align*}
\mu\left(\frac{f(2x, 2z) + f(0, 0)}{2} - f(x, z), \frac{t}{4}\right) & \geq \mu'(\varphi(x, x, z, -z), \frac{t}{8}) \circ \mu'(\varphi(0, x, 0, z), \frac{t}{8}), \\
\nu\left(\frac{f(2x, 2z) + f(0, 0)}{2} - f(x, z), \frac{t}{4}\right) & \leq \nu'(\varphi(x, x, z, -z), \frac{t}{8}) \circ \nu'(\varphi(x, x, z, z), \frac{t}{8}) \circ \nu'(\varphi(0, x, 0, z), \frac{t}{8}).
\end{align*}
\]

(3.11)

for all \(x, z \in X \) and all \(t > 0 \). Replacing \(x \) by \(2^n x \) and \(z \) by \(2^n z \) in \((3.11)\) and
using (3.11), we get
\[
\begin{align*}
& \left\{ \begin{array}{l}
\mu \left(\frac{f(2^{n+1}x, 2^{n+1}z) + f(0, 0)}{4^{n+1}} - \frac{f(2^n x, 2^n z)}{4^n}, \frac{a^n t}{4^{n+1}} \right) \\
\geq *^2 \mu' \left(\varphi(2^n x, 2^n x, 2^n x, -2^n z), \frac{t}{8^n} \right) *^2 \mu' \left(\varphi(2^n x, 2^n x, 2^n z, 2^n z), \frac{t}{8^n} \right) \\
+ \mu' \left(\varphi(0, 2^n x, 0, 2^n z), \frac{t}{8^n} \right), \\
\geq *^2 \mu' \left(\varphi(x, x, z, -z), \frac{t}{8^n} \right) *^2 \mu' \left(\varphi(-x, x, z, 2^n z), \frac{t}{8^n} \right) *^2 \mu' \left(\varphi(0, 0, z), \frac{t}{8^n} \right), \end{array} \right.
\end{align*}
\]
for all \(x, z \in X \), all \(n \in \mathbb{N} \) and all \(t > 0 \). By replacing \(t \) by \(a^n t \) in above inequalities, we have
\[
\begin{align*}
& \left\{ \begin{array}{l}
\mu \left(\frac{f(2^{n+1}x, 2^{n+1}z) + f(0, 0)}{4^{n+1}} - \frac{f(2^n x, 2^n z)}{4^n}, \frac{a^n t}{4^{n+1}} \right) \\
\geq *^2 \mu' \left(\varphi(x, x, z, -z), \frac{t}{8^n} \right) *^2 \mu' \left(\varphi(-x, x, z, 2^n z), \frac{t}{8^n} \right) *^2 \mu' \left(\varphi(0, 0, z), \frac{t}{8^n} \right), \\
\geq *^2 \mu' \left(\varphi(x, x, z, -z), \frac{t}{8^n} \right) *^2 \mu' \left(\varphi(-x, x, z, 2^n z), \frac{t}{8^n} \right) *^2 \mu' \left(\varphi(0, 0, z), \frac{t}{8^n} \right), \end{array} \right.
\end{align*}
\]
(3.12)
for all \(x, z \in X \), all \(n \in \mathbb{N} \) and all \(t > 0 \). It follows from
\[
\sum_{k=0}^{n-1} \left[\frac{f(2^{k+1}x, 2^{k+1}z) + f(0, 0) - f(2^k x, 2^k z)}{4^{k+1}} \right] = \frac{f(2^n x, 2^n z)}{4^n} - f(x, z) + \frac{1}{3} \left(1 - \frac{1}{4^n} \right) f(0, 0)
\]
and (3.12),
\[
\begin{align*}
& \left\{ \begin{array}{l}
\mu \left(\frac{f(2^n x, 2^n z)}{4^n} - f(x, z) + \frac{1}{3} \left(1 - \frac{1}{4^n} \right) f(0, 0), \sum_{k=0}^{n-1} \frac{a^n t}{4^{k+1}} \right) \\
\geq *^n \mu' \left(\varphi(x, x, z, -z), \frac{t}{8^n} \right) *^n \mu' \left(\varphi(-x, x, z, 2^n z), \frac{t}{8^n} \right) *^n \mu' \left(\varphi(0, 0, z), \frac{t}{8^n} \right), \\
\geq *^n \mu' \left(\varphi(x, x, z, -z), \frac{t}{8^n} \right) *^n \mu' \left(\varphi(-x, x, z, 2^n z), \frac{t}{8^n} \right) *^n \mu' \left(\varphi(0, 0, z), \frac{t}{8^n} \right), \end{array} \right.
\end{align*}
\]
(3.13)
for all \(x, z \in X \), all \(n \in \mathbb{N} \) and all \(t > 0 \), where \(\prod_{j=1}^n a_j := a_1 * a_2 * \cdots * a_n \), \(\prod_{j=1}^n a := a_1 \circ a_2 \circ \cdots \circ a_n \), \(*^n a := \prod_{j=1}^n a \) and \(\circ^n a := \prod_{j=1}^n a = \)
for all \(a, a_1, a_2, \ldots, a_n \in [0, 1] \). By replacing \(x \) with \(2^m x \) and \(z \) with \(2^m z \) in (3.13), we have

\[
\begin{align*}
\mu\left(\frac{f(2^{m+n} x, 2^{m+n} z)}{4^{m+n}} - \frac{f(2^m x, 2^m z)}{4^m} + \frac{1}{3.4^m} \left(1 - \frac{1}{4^m} \right) f(0,0), \sum_{k=0}^{n-1} \frac{\alpha^k t}{4^{m+k+r}} \right) \\
\geq \ast 2^n \nu'(\varphi(2^m x, 2^m z, -2^m z), \frac{t}{8^m}) \ast n \mu'(\varphi(0, 2^m x, 0, 2^m z), \frac{t}{8^m}),
\end{align*}
\]

\[
\begin{align*}
\nu\left(\frac{f(2^{m+n} x, 2^{m+n} z)}{4^{m+n}} - \frac{f(2^m x, 2^m z)}{4^m} + \frac{1}{3.4^m} \left(1 - \frac{1}{4^m} \right) f(0,0), \sum_{k=0}^{n-1} \frac{\alpha^k t}{4^{m+k+r}} \right) \\
\leq \ast 2^n \nu'(\varphi(0, x, 0, z), \frac{t}{8^m}) \ast n \nu'(\varphi(x, x, z, z), \frac{t}{8^m}) \ast n \nu'(\varphi(0, 0, x, z), \frac{t}{8^m}),
\end{align*}
\]

for all \(x, z \in X \), all \(m, n \in \mathbb{N} \) and all \(t > 0 \). So we have gotten that

\[
\begin{align*}
\mu\left(\frac{f(2^{m+n} x, 2^{m+n} z)}{4^{m+n}} - \frac{f(2^m x, 2^m z)}{4^m} + \frac{1}{3.4^m} \left(1 - \frac{1}{4^m} \right) f(0,0), \sum_{k=0}^{n+m-1} \frac{\alpha^k t}{4^{m+k+r}} \right) \\
\geq \ast 2^n \nu'(\varphi(x, x, z, -z), \frac{t}{8^m}) \ast n \mu'(\varphi(0, 0, x, z), \frac{t}{8^m}),
\end{align*}
\]

\[
\begin{align*}
\nu\left(\frac{f(2^{m+n} x, 2^{m+n} z)}{4^{m+n}} - \frac{f(2^m x, 2^m z)}{4^m} + \frac{1}{3.4^m} \left(1 - \frac{1}{4^m} \right) f(0,0), \sum_{k=0}^{n+m-1} \frac{\alpha^k t}{4^{m+k+r}} \right) \\
\leq \ast 2^n \nu'(\varphi(x, x, z, -z), \frac{t}{8^m}) \ast n \nu'(\varphi(0, x, z, z), \frac{t}{8^m}) \ast n \nu'(\varphi(0, 0, x, z), \frac{t}{8^m}),
\end{align*}
\]

for all \(x, z \in X \), all \(m, n \in \mathbb{N} \) and all \(t > 0 \). Replacing \(t \) by \(\frac{t}{\sum_{k=m}^{n+m-1} \frac{\alpha^k}{4^k}} \), we obtain

\[
\begin{align*}
\mu\left(\frac{f(2^{m+n} x, 2^{m+n} z)}{4^{m+n}} - \frac{f(2^m x, 2^m z)}{4^m} + \frac{1}{3.4^m} \left(1 - \frac{1}{4^m} \right) f(0,0), \frac{t}{\sum_{k=m}^{n+m-1} \frac{\alpha^k}{4^k}} \right) \\
\geq \ast 2^n \nu'(\varphi(x, x, z, -z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{\alpha^k}{4^k}}) \ast n \mu'(\varphi(0, x, z, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{\alpha^k}{4^k}}),
\end{align*}
\]

\[
\begin{align*}
\nu\left(\frac{f(2^{m+n} x, 2^{m+n} z)}{4^{m+n}} - \frac{f(2^m x, 2^m z)}{4^m} + \frac{1}{3.4^m} \left(1 - \frac{1}{4^m} \right) f(0,0), \frac{t}{\sum_{k=m}^{n+m-1} \frac{\alpha^k}{4^k}} \right) \\
\leq \ast 2^n \nu'(\varphi(x, x, z, -z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{\alpha^k}{4^k}}) \ast n \nu'(\varphi(0, 0, x, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{\alpha^k}{4^k}}) \ast n \nu'(\varphi(0, 0, x, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{\alpha^k}{4^k}})
\end{align*}
\]

for all \(x, z \in X \), all \(m, n \in \mathbb{N} \) and all \(t > 0 \). Since \(0 < \alpha < 4 \), \(\sum_{k=0}^{\infty} \frac{\alpha^k}{4^k} < \infty \) and \(\sum_{k=m}^{n+m-1} \frac{\alpha^k}{4^k} \to 0 \) as \(m \to \infty \) for all \(n \in \mathbb{N} \). Thus \(\frac{t}{\sum_{k=m}^{n+m-1} \frac{\alpha^k}{4^k}} \to \infty \) and

\[
\begin{align*}
\ast 2^n \nu'(\varphi(x, x, z, -z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{\alpha^k}{4^k}}) \ast n \nu'(\varphi(0, x, z, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{\alpha^k}{4^k}}) \\
\geq \ast 2^n \nu'(\varphi(x, x, z, -z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{\alpha^k}{4^k}}) \ast n \nu'(\varphi(0, 0, x, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \frac{\alpha^k}{4^k}}) \to 1
\end{align*}
\]
as \(m \to \infty \) for all \(x, z \in X \), all \(m, n \in \mathbb{N} \) and all \(t > 0 \). Hence the Cauchy criterion for convergence in IFNS shows that \(\left(\frac{f(x, y, z, w)}{4^n} \right) \) is a Cauchy sequence in \((Y, \mu, \nu)\) for all \(x, z \in X \). Since \((Y, \mu, \nu)\) is complete, then this sequence converges to some point \(F(x, y) \in Y \) defined by \(F(x, y) = \lim_{n \to \infty} \frac{f(x, y, z, w)}{4^n} \) for all \(x, z \in X \). Now by putting \(m = 0 \) in (3.14), we obtain

\[
\left\{ \begin{array}{l}
\mu \left(\frac{f(x, y, z, w)}{4^n} - f(x, z) + \frac{1}{3} \left(1 - \frac{1}{4^n} \right) f(0, 0, t) \right) \\
\nu \left(\frac{f(x, y, z, w)}{4^n} - f(x, z) + \frac{1}{3} \left(1 - \frac{1}{4^n} \right) f(0, 0, t) \right)
\end{array} \right.
\]

for all \(x, z \in X \), all \(n \in \mathbb{N} \) and all \(t > 0 \). By taking limit from above inequalities as \(n \to \infty \) and using the definition of IFNS, we get

\[
\left\{ \begin{array}{l}
\mu \left(\frac{f(x, y) - f(x, z) + \frac{1}{3} f(0, 0, t)}{4^n} \right) \geq \frac{\mu'}{\mu} \left(\varphi(x, x, z, -z), \frac{(4^n - 1)}{4^n} \right) \\
\nu \left(\frac{f(x, y) - f(x, z) + \frac{1}{3} f(0, 0, t)}{4^n} \right) \leq \frac{\nu'}{\nu} \left(\varphi(x, x, z, -z), \frac{(4^n - 1)}{4^n} \right)
\end{array} \right.
\]

for all \(x, z \in X \) and all \(t > 0 \), which are the desired inequalities (3.3).

Now we show that \(F \) satisfies in (1.1). Replacing \(x, y, z, w \) and \(t \) in (3.2) respectively by \(2^n x, 2^n y, 2^n z, 2^n w \) and \(4^n t \), we get

\[
\left\{ \begin{array}{l}
\mu \left(\frac{2^{2n} f(x, y, z, w) + 2 f(x, y, z, w)}{4^n} + 2 f(x, y, z, w) \right) \\
\nu \left(\frac{2^{2n} f(x, y, z, w) + 2 f(x, y, z, w)}{4^n} - 2 f(x, y, z, w) \right)
\end{array} \right.
\]

for all \(x, y, z, w \in X \) all \(n \in \mathbb{N} \) and all \(t > 0 \). Since \(\frac{4^n t}{\alpha^n} \to \infty \) as \(n \to \infty \), then

\[
\lim_{n \to \infty} \frac{\mu'(\varphi(x, n y, z, n w), \frac{4^n t}{\alpha^n})}{\alpha^n} = 1
\]

and

\[
\lim_{n \to \infty} \frac{\nu'(\varphi(x, n y, z, n w), \frac{4^n t}{\alpha^n})}{\alpha^n} = 0
\]
for all \(x, y, z, w \in X \) and all \(t > 0 \).

To prove the uniqueness of the mapping \(F \), assume that there exists a mapping \(G : X \times X \to Y \) which satisfies (1.1) and (3.3). For fix \(x, y \in X \), we know that \(F(2^n x, 2^n y) = 4^n F(x, y) \) and \(G(2^n x, 2^n y) = 4^n G(x, y) \) for all \(n \in \mathbb{N} \). It follows from (3.3) that

\[
\mu(F(x, y) - G(x, y), t) = \mu\left(\frac{F(2^n x, 2^n y)}{4^n} - \frac{G(2^n x, 2^n y)}{4^n}, t \right) \\
\geq *\mu\left(- \frac{G(2^n x, 2^n y)}{4^n} + \frac{f(2^n x, 2^n y)}{4^n} - \frac{1}{3.4^n f(0, 0)}, t \right) \\
= *^2 *^\infty \mu'\left(\varphi(2^n x, 2^n y, 2^n y), \frac{4^n(4 - \alpha)t}{16} \right) \\
= *^2 *^\infty \mu'\left(\varphi(0, 2^n x, 2^n y), \frac{4^n(4 - \alpha)t}{16} \right) \\
\geq *^2 *^\infty \mu'\left(\varphi(x, y), \frac{4^n(4 - \alpha)t}{16n} \right) \\
= *^2 *^\infty \mu'\left(\varphi(x, y), \frac{4^n(4 - \alpha)t}{16n} \right) \\
= *^2 *^\infty \mu'\left(\varphi(0, x, 0), \frac{4^n(4 - \alpha)t}{16n} \right)
\]

for all \(x, y \in X \), all \(n \in \mathbb{N} \) and all \(t > 0 \), and similarly

\[
\nu(F(x, y) - G(x, y), t) \leq o^2 o^\infty \nu'\left(\varphi(x, y), \frac{4^n(4 - \alpha)t}{16n} \right) \\
o^2 o^\infty \nu'\left(\varphi(x, y), \frac{4^n(4 - \alpha)t}{16n} \right) \\
o^2 o^\infty \nu'\left(\varphi(0, x, 0), \frac{4^n(4 - \alpha)t}{16n} \right)
\]

for all \(x, y \in X \), all \(n \in \mathbb{N} \) and all \(t > 0 \). Since \(\lim_{n \to \infty} \frac{4^n(4 - \alpha)t}{16n} = \infty \) for all \(t > 0 \), we get

\[
\lim_{n \to \infty} \mu'\left(\varphi(x, y), \frac{4^n(4 - \alpha)t}{16n} \right) = 1
\]

and

\[
\lim_{n \to \infty} \nu'\left(\varphi(x, y), \frac{4^n(4 - \alpha)t}{16n} \right) = 0
\]
for all \(x, y \in X \) and all \(t > 0 \). Therefore \(\mu(F(x, y) - G(x, y), t) = 1 \) and \(\nu(F(x, y) - G(x, y), t) = 0 \) for all \(t > 0 \). Thus it is concluded that \(F(x, y) = G(x, y) \).

Example 3.2. Let \(X \) be a Hilbert space with inner product \(\langle \cdot, \cdot \rangle \) and \(Z \) be a normed spaced. Denote by \((\mu, \nu)\) and \((\mu', \nu')\) the intuitionistic fuzzy norms given as in Example 2.4 on \(X \) and \(Z \), respectively. Let \(\|\cdot\| \) be induced norm on \(X \) by the inner product \(\langle \cdot, \cdot \rangle \) on \(X \). Let \(\varphi : X \times X \times X \times X \to Z \) be a mapping defined by \(\varphi(x, y, z, w) = 2(\|x\| + \|y\| + \|z\| + \|w\|)z_0 \) for all \(x, y, z, w \in X \), where \(z_0 \) is a fixed unit vector in \(Z \). Define a mapping \(f : X \times X \to X \) by

\[
f(x, y) := (x, y + x_0)x_0 \quad \text{for all } x, y \in X, \text{ where } x_0 \text{ is a fixed unit vector in } X.
\]

Then

\[
\mu(f(x + y, z - w) + f(x - y, z + w) - 2f(x, z) + 2f(y, w), t) = \mu(2(y, x_0)x_0, t)
\]

and

\[
\nu(f(x + y, z - w) + f(x - y, z + w) - 2f(x, z) + 2f(y, w), t) = \nu(2(y, x_0)x_0, t)
\]

for all \(x, y, z, w \in X \) and all \(t > 0 \). Also we can get

\[
\mu'(\varphi(2x, 2y, 2z, 2w), t) = \frac{t}{t + 2(\|x\| + \|y\| + \|z\| + \|w\|)} = \mu'(2\varphi(x, y, z, w), t)
\]

and

\[
\nu'(\varphi(2x, 2y, 2z, 2w), t) = \frac{4(\|x\| + \|y\| + \|z\| + \|w\|)}{t + 4(\|x\| + \|y\| + \|z\| + \|w\|)} = \nu'(2\varphi(x, y, z, w), t)
\]

for all \(x, y, z, w \in X \) and all \(t > 0 \). Therefore

\[
\lim_{n \to \infty} \mu'(\varphi(2x, 2y, 2z, 2w), 4^n t) = \lim_{n \to \infty} \frac{4^n t}{4^n t + 2^{n+1}(\|x\| + \|y\| + \|z\| + \|w\|)} = 1
\]

and

\[
\lim_{n \to \infty} \nu'(\varphi(2x, 2y, 2z, 2w), 4^n t) = \lim_{n \to \infty} \frac{2^{n+1}(\|x\| + \|y\| + \|z\| + \|w\|)}{4^n t + 2^{n+1}(\|x\| + \|y\| + \|z\| + \|w\|)} = 0
\]

for all \(x, y, z, w \in X \) and all \(t > 0 \). Hence the assumptions of Theorem 3.1 for \(\alpha = 2 \) are fulfilled. Therefore, there exist a unique bi-additive mapping \(F : X \times X \to X \) such that

\[
\mu(F(x, y) - f(x, y), t) \geq 2^t \mu'(4(\|x\| + \|y\|)z_0, t) \ast \mu'(2(\|x\| + \|y\|)z_0, t)
\]

and

\[
\nu(F(x, y) - f(x, y), t) \leq c^2 \nu'(4(\|x\| + \|y\|)z_0, t) \circ \nu'(2(\|x\| + \|y\|)z_0, t)
\]

for all \(x, y \in X \) and all \(t > 0 \).
The following theorem will be proved the case \(\alpha > 4 \).

Theorem 3.3. Let \(X \) be a linear space and let \((Z, \mu', \nu')\) be an IFNS. Let \(\varphi : X \times X \times X \times \rightarrow Z \) be a mapping such that, for some \(\alpha > 4 \),

\[
\mu'(\varphi\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}, \frac{w}{2}\right), t) \geq \mu'(\varphi(x, y, z, w), ct),
\]

\[
\nu'(\varphi\left(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}, \frac{w}{2}\right), t) \leq \nu'(\varphi(x, y, z, w), ct),
\]

for all \(x, y, z, w \in X \) and all \(t > 0 \). Let \((Y, \mu, \nu)\) be an intuitionistic fuzzy Banach space and let \(f : X \times X \rightarrow Y \) be a \(\varphi \)-approximately bi-additive mapping in the sense of \ref{3.2} with \(f(0, 0) = 0 \). Then there exists a unique mapping \(F : X \times X \rightarrow Y \) such that

\[
\mu(F(x, y) - f(x, y), t) \geq \ast \mu'(\varphi(x, x, y, -y), \frac{(\alpha - 4)}{8}t)
\]

\[
\ast \mu'(\varphi(x, -x, y, y), \frac{(\alpha - 4)}{8}t) \ast \mu(\varphi(0, x, 0, y), \frac{(\alpha - 4)}{8}t)
\]

and

\[
\mu(F(x, y) - f(x, y), t) \leq \circ \nu'(\varphi(x, x, y, -y), \frac{(\alpha - 4)}{8}t)
\]

\[
\circ \nu'(\varphi(x, -x, y, y), \frac{(\alpha - 4)}{8}t) \circ \nu'(\varphi(0, x, 0, y), \frac{(\alpha - 4)}{8}t)
\]

for all \(x, y \in X \) and all \(t > 0 \).

Proof. The proof is similar to the proof of Theorem 3.1. Then we present a summary proof. From \ref{3.11}, we have

\[
\mu(f(2x, 2z) - 4f(x, z), t) \geq \ast \mu'(\varphi(x, x, z, -z), \frac{1}{8}) \ast \mu'(\varphi(x, -x, z, z), \frac{1}{8})
\]

\[
\ast \mu'(\varphi(0, x, 0, z), \frac{1}{8}),
\]

\[
\nu(f(2x, 2z) - 4f(x, z), t) \leq \circ \nu'(\varphi(x, x, z, -z), \frac{1}{8}) \circ \nu'(\varphi(x, -x, z, z), \frac{1}{8})
\]

\[
\circ \nu'(\varphi(0, x, 0, z), \frac{1}{8})
\]

for all \(x, z \in X \) and all \(t > 0 \). Thus we get

\[
\mu\left(f(x, z) - 4f\left(\frac{x}{2}, \frac{z}{2}\right), t\right) \geq \ast \mu'(\varphi(x, x, z, -z), \frac{\alpha t}{8})
\]

\[
\ast \mu'(\varphi(x, -x, z, z), \frac{\alpha t}{8}) \ast \mu'(\varphi(0, x, 0, z), \frac{\alpha t}{8}),
\]

\[
\nu\left(f(x, z) - 4f\left(\frac{x}{2}, \frac{z}{2}\right), t\right) \leq \circ \nu'(\varphi(x, x, z, -z), \frac{\alpha t}{8}) \circ \nu'(\varphi(x, -x, z, z), \frac{\alpha t}{8})
\]

\[
\circ \nu'(\varphi(0, x, 0, z), \frac{\alpha t}{8})
\]
for all \(x, z \in X\) and all \(t > 0\). Similar in (3.13), for all \(x, z \in X\), all \(m, n \in \mathbb{N}\) and \(t > 0\), we can conclude

\[
\begin{array}{l}
\mu \left(4^m f\left(\frac{x}{2^m}, \frac{z}{2^m} \right) - 4^n f\left(\frac{x}{2^m}, \frac{z}{2^n} \right), t \right) \\
\geq *^2 \mu' \left(\varphi(x, x, z), \frac{t}{8 \sum_{k=0}^{n+m-1} \alpha^k t} \right) *^n \mu' \left(\varphi(x, x, z), \frac{t}{8 \sum_{k=0}^{n+m-1} \alpha^k t} \right) \\
*^n \mu' \left(\varphi(0, x, 0), \frac{t}{8 \sum_{k=0}^{n+m-1} \alpha^k t} \right)
\end{array}
\]

(3.15)

for all \(x, z \in X\), all \(m, n \in \mathbb{N}\) and all \(t > 0\). Since \(\alpha > 4\), \(\sum_{k=0}^{\infty} \frac{1}{\alpha^k} \) is Cauchy and \(\sum_{k=m}^{n+m-1} \frac{1}{\alpha^k} \rightarrow 0\) as \(m \rightarrow \infty\) for all \(n \in \mathbb{N}\). Thus \(\frac{t}{\sum_{k=m}^{n+m-1} \frac{1}{\alpha^k}} \rightarrow \infty\), then we have

\[
*^2 \mu' \left(\varphi(x, x, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \alpha^k} \right) = \mu' \left(\varphi(x, x, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \alpha^k} \right) \quad \rightarrow 0
\]

and

\[
*^2 \nu' \left(\varphi(x, x, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \alpha^k} \right) = \nu' \left(\varphi(x, x, z), \frac{t}{8 \sum_{k=m}^{n+m-1} \alpha^k} \right) \quad \rightarrow 0
\]

as \(m \rightarrow \infty\) for all \(x, z \in X\), all \(m, n \in \mathbb{N}\) and all \(t > 0\). Hence the Cauchy criterion for convergence in IFNS shows that \(4^n f\left(\frac{x}{2^n}, \frac{z}{2^n} \right) \) is a Cauchy sequence in \((Y, \mu, \nu)\) for all \(x, z \in X\). Since \((Y, \mu, \nu)\) is complete, then this sequence converges to some point \(F(x, z) \in Y\) defined by \(F(x, y) = \lim_{n \rightarrow \infty} 4^n f\left(\frac{x}{2^n}, \frac{y}{2^n} \right)\) for all \(x, z \in X\). By putting \(m = 0\) in (3.13), we can deduce

\[
\mu(F(x, y) - f(x, y), t) \geq *^\infty \mu' \left(\varphi(x, x, y, -y), \frac{(\alpha - 4)}{8} t \right) *^\infty \mu' \left(\varphi(x, x, y, -y), \frac{(\alpha - 4)}{8} t \right)
\]

and

\[
\nu(F(x, y) - f(x, y), t) \leq *^\infty \nu' \left(\varphi(x, x, y, -y), \frac{(\alpha - 4)}{8} t \right) *^\infty \nu' \left(\varphi(x, x, y, -y), \frac{(\alpha - 4)}{8} t \right)
\]
for all \(x, y \in X \) and all \(t > 0 \). The remainder of the proof is similar to the proof of Theorem 3.1.

\[
\text{Definition 4.1. Let } g : \mathbb{R} \to X \text{ be a mapping, where } \mathbb{R} \text{ is endowed with the Euclidean topology and } X \text{ is an intuitionistic fuzzy normed space equipped with intuitionistic fuzzy norm } (\mu, \nu). \text{ Then } L \in X \text{ is said to be intuitionistic fuzzy limit of } g \text{ at some } r_0 \in \mathbb{R} \text{ if and only if for every } \varepsilon > 0 \text{ and } \alpha, \beta \in (0, 1) \text{ there exists some } \delta = \delta(\varepsilon, \alpha, \beta) > 0 \text{ such that } \mu(g(r) - L, \varepsilon) \geq \alpha \text{ and } \mu(g(r) - L, \varepsilon) \leq 1 - \beta \text{ whenever } 0 < |r - r_0| < \delta. \text{ In this case, we write } \lim_{r \to r_0} g(r) = L, \text{ which also means that } \lim_{r \to r_0} \mu(g(r) - L, t) = 1 \text{ and } \lim_{r \to r_0} \nu(g(r) - L, t) = 0 \text{ or } \mu(g(r) - L, t) = 1 \text{ and } \nu(g(r) - L, t) = 0 \text{ as } r \to r_0 \text{ for all } t > 0. \]

\[
\text{Theorem 4.2. Let } X \text{ be a normed space and } (Y, \mu, \nu) \text{ be an intuitionistic fuzzy Banach space. Let } (Z, \mu', \nu') \text{ be an IFNS and let } 0 < p < 2 \text{ and } z_0 \in Z. \text{ Let } f : X \times X \to Y \text{ be a mapping such that}
\]

\[
\begin{align*}
\begin{cases}
\mu(D_0 f(x, y, z, w), t) & \geq \mu'((\|x\| + \|y\| + \|z\| + \|w\|)z_0, t), \\
\nu(D_0 f(x, y, z, w), t) & \leq \nu'((\|x\| + \|y\| + \|z\| + \|w\|)z_0, t)
\end{cases}
\end{align*}
\]

\[
(4.1)
\]

\[
\text{for all } x, y, z, w \in X \text{ and all } t > 0. \text{ Then there exists a unique mapping } F : X \times X \to Y \text{ satisfies } (1.1) \text{ such that}
\]

\[
\begin{align*}
\begin{cases}
\mu(F(x, y) - f(x, y), t) & \geq \mu'(2(\|x\| + \|y\|)z_0, \frac{(4-2^p)}{8}t), \\
\nu(F(x, y) - f(x, y), t) & \leq \nu'(2(\|x\| + \|y\|)z_0, \frac{(4-2^p)}{8}t)
\end{cases}
\end{align*}
\]

\[
(4.2)
\]

\[
\text{for all } x, y, z, w \in X \text{ and all } t > 0. \text{ Furthermore, if the mapping } g : \mathbb{R} \to Y \text{ defined by } g(r) := \frac{1}{4n} \text{ is intuitionistic fuzzy continuous for some } x, y \in X \text{ and all } n \in \mathbb{N}, \text{ then the mapping } r \to F(rx, ry) \text{ from } \mathbb{R} \to Y \text{ is intuitionistic fuzzy continuous; in this case, } F(rx, ry) = r^2 F(x, y) \text{ for all } r \in \mathbb{R}. \]

\[
\text{Proof. Define } \varphi : X \times X \times X \times X \to Z \text{ by } \varphi(x, y, z, w) = (\|x\|^p + \|y\|^p + \|z\|^p + \|w\|^p)z_0 \text{ for all } x, y, z, w \in X. \text{ Existence and uniqueness of the mapping } F \text{ satisfying } (1.1) \text{ and } (4.1) \text{ are deduced from Theorem 3.1. Note that, for all } x, y \in X,\]

\[
\text{4 Intuitionistic Fuzzy Continuity}
\]

In this section we apply the intuitionistic fuzzy continuity, which is discussed in [13], to study continuous mapping satisfying (1.1) approximately.
all $n \in \mathbb{N}$ and all $t > 0$, we get

\[
\begin{align*}
\mu \left(F(x, y) - \frac{f(2^n x, 2^n y)}{4^n}, t \right) &= \mu \left(f(2^n x, 2^n y), t \right) \\
&= \mu \left(f(2^n x, 2^n y) - f(2^n x, 2^n y), 4^n t \right) \\
&\geq \ast \infty \mu' \left(\|x\|^p + \|y\|^p \right)_{2^{np+1}} \left(\frac{4^n(4 - 2^p)}{8} \right) t \\
&\ast \infty \mu' \left(\|x\|^p + \|y\|^p \right)_{2^{np+1}} \left(\frac{4^n(4 - 2^p)}{8} \right) t \\
&\ast \infty \mu' \left(\|x\|^p + \|y\|^p \right)_{2^{np+1}} \left(\frac{4^n(4 - 2^p)}{8} \right) t,
\end{align*}
\]

(4.3)

\[
\nu \left(F(x, y) - \frac{f(2^n x, 2^n y)}{4^n}, t \right) = \nu \left(f(2^n x, 2^n y), t \right) \\
= \nu \left(f(2^n x, 2^n y) - f(2^n x, 2^n y), 4^n t \right) \\
\leq \circ \infty \nu' \left(\|x\|^p + \|y\|^p \right)_{2^{np+1}} \left(\frac{4^n(4 - 2^p)}{8} \right) t \\
\circ \infty \nu' \left(\|x\|^p + \|y\|^p \right)_{2^{np+1}} \left(\frac{4^n(4 - 2^p)}{8} \right) t \\
\circ \infty \nu' \left(\|x\|^p + \|y\|^p \right)_{2^{np+1}} \left(\frac{4^n(4 - 2^p)}{8} \right) t.
\]

By putting $x = y = 0$ in (4.3), we have

\[
\begin{align*}
\mu \left(f(0, 0) - \frac{1}{t} f(0, 0), t \right) &\geq 1, \\
\nu \left(f(0, 0) - \frac{1}{t} f(0, 0), t \right) &\leq 0
\end{align*}
\]

for all $n \in \mathbb{N}$ and $t > 0$.

Consider fix $x, y \in X$. From (4.3), we obtain

\[
\begin{align*}
\mu \left(F(rx, ry) - \frac{f(2^n rx, 2^n ry)}{4^n}, t \right) \geq \ast \infty \mu' \left(\|x\|^p + \|y\|^p \right)_{2^{np+1}} \left(\frac{4^n(4 - 2^p)}{8} \right) t \\
\ast \infty \mu' \left(\|x\|^p + \|y\|^p \right)_{2^{np+1}} \left(\frac{4^n(4 - 2^p)}{8} \right) t + \ast \infty \mu' \left(\|x\|^p + \|y\|^p \right)_{2^{np+1}} \left(\frac{4^n(4 - 2^p)}{8} \right) t \\
\ast \infty \mu' \left(\|x\|^p + \|y\|^p \right)_{2^{np+1}} \left(\frac{4^n(4 - 2^p)}{8} \right) t \\
\ast \infty \mu' \left(\|x\|^p + \|y\|^p \right)_{2^{np+1}} \left(\frac{4^n(4 - 2^p)}{8} \right) t \\
\ast \infty \mu' \left(\|x\|^p + \|y\|^p \right)_{2^{np+1}} \left(\frac{4^n(4 - 2^p)}{8} \right) t.
\end{align*}
\]

for all $r \in \mathbb{R}\backslash\{0\}$. Since $\lim_{n \to \infty} 4^n(4 - 2^p) t_2^{np+1} = \infty$ for all $t > 0$, then we get

\[
\begin{align*}
\lim_{n \to \infty} \mu \left(F(rx, ry) - \frac{f(2^n rx, 2^n ry)}{4^n}, t \right) &= 1, \\
\lim_{n \to \infty} \nu \left(F(rx, ry) - \frac{f(2^n rx, 2^n ry)}{4^n}, t \right) &= 0
\end{align*}
\]

for all $r \in \mathbb{R}\backslash\{0\}$. Consider fix $r_0 \in \mathbb{R}$, from the intuitionistic fuzzy continuity of the mapping $t \to \frac{f(2^n x, 2^n y)}{4^n}$, we have

\[
\begin{align*}
\lim_{n \to \infty} \mu \left(\frac{f(2^n rx, 2^n ry)}{4^n} - \frac{f(2^n r_0 x, 2^n r_0 y)}{4^n}, t \right) &= 1, \\
\lim_{n \to \infty} \nu \left(\frac{f(2^n rx, 2^n ry)}{4^n} - \frac{f(2^n r_0 x, 2^n r_0 y)}{4^n}, t \right) &= 0.
\end{align*}
\]
It is concluded that
\[\mu(F(rx, ry) - F(r_0x, r_0y), t) \geq \mu(F(rx, ry) - \frac{f(2^nrx, 2^ny)}{4^n}, \frac{t}{3}) \]
* \mu\left(\frac{f(2^nrx, 2^ny)}{4^n} - F(r_0x, r_0y), \frac{t}{3}\right) \geq 1 \]

and
\[\nu(F(rx, ry) - F(r_0x, r_0y), t) \leq 0 \]
as \(r \to r_0 \) for all \(t > 0 \). Therefore it is concluded that mapping \(r \to F(rx, ry) \) is intuitionistic fuzzy continuous.

By using the intuitionistic fuzzy continuity of the mapping \(r \to F(rx, ry) \) we show that \(f(sx, sy) = s^2F(x, y) \) for all \(s \in \mathbb{R} \).

Consider rational number \(r \) such that \(0 < |r - s| < \delta \) and \(|r^2 - s^2| < 1 - \alpha \), then we will have
\[\mu(F(sx, sy) - s^2(x, y), t) \geq \mu\left(F(sx, sy) - F(rx, ry), \frac{t}{3}\right) * \mu\left(F(rx, ry) - r^2F(x, y), \frac{t}{3}\right) * \mu\left(\frac{\nu^2F(x, y) - s^2F(x, y)}{3(1 - \alpha)}, \frac{t}{3}\right) \geq 1 * \mu\left(F(x, y), \frac{t}{3(1 - \alpha)}\right) \]

and
\[\nu(F(sx, sy) - s^2(x, y), t) \leq (1 - \alpha) \circ 0 \circ \nu\left(F(x, y), \frac{t}{3(1 - \alpha)}\right) \]

When \(\alpha \to 1 \) and using the definition of IFNS, we get
\[\mu(F(sx, sy) - s^2F(x, y), t) = 1 \quad \text{and} \quad \nu(F(sx, sy) - s^2F(x, y), t) = 0. \]

So we conclude that
\[F(sx, sy) = s^2F(x, y). \]

In the following we prove a result similar to Theorem 4.2 for case \(p > 2 \).

Theorem 4.3. Let \(X \) be a normed space and \((Y, \mu, \nu)\) be an intuitionistic fuzzy Banach space. Let \((Z, \mu', \nu')\) be an IFNS and let \(p > 2 \) and \(z_0 \in Z \). Let \(f : \)
Approximate Bi-Additive Mappings in Intuitionistic Fuzzy Normed Spaces

$X \times X \to Y$ be a mapping such that satisfies in (1.1). Then there exists a unique mapping $F : X \times X \to Y$ satisfies (1.1) such that

\begin{align*}
\mu(F(x, y) - f(x, y), t) &\geq *^\infty \mu'(2\|x\|^p + \|y\|^p) z_0, \left(\frac{(2^p-4)}{8} t\right) \\
\nu(F(x, y) - f(x, y), t) &\leq *^\infty \nu'(2\|x\|^p + \|y\|^p) z_0, \left(\frac{(2^p-4)}{8} t\right)
\end{align*}

(4.4)

for all $x, y \in X$ and all $t > 0$. Furthermore, if for some $x, y \in X$ and all $n \in \mathbb{N}$, the mapping $g : \mathbb{R} \to Y$ defined by $g(r) := 4^n f(x, y)^2 + 4^n f(x, y)^2$ is intuitionistic fuzzy continuous for some $x, y \in X$ and all $n \in \mathbb{N}$, then the mapping $r \to F(rx, ry)$ from \mathbb{R} to Y is intuitionistic fuzzy continuous, in this case, $F(rx, ry) = r^2 F(x, y)$ for all $r \in \mathbb{R}$.

Proof. Define a mapping $\varphi : X \times X \times X \times X \to Z$ by $\varphi(x, y, z, w) = (\|x\|^p + \|y\|^p + \|z\|^p + \|w\|^p) z_0$ for all $x, y, z, w \in X$. Then

\[
\mu'(\varphi(\frac{x}{2}, \frac{x}{2}, \frac{x}{2}, \frac{x}{2}), t) = \mu'(\frac{1}{2^{p-1}}(\|x\|^p + \|y\|^p) z_0, t)
\]

for all $x, y \in X$ and all $t > 0$. From $p > 2$, then $2^p > 4$. By Theorem 4.3 there exists a unique mapping F which satisfies (1.1) and (4.4). The rest of the proof is similar as in Theorem 4.2.

References

(Received 19 November 2013)
(Accepted 9 March 2014)