\((\alpha, \beta) \)-Normal Composition Operators

Anuradha Gupta\(^{\dagger} \) and Pooja Sharma\(^{\ddagger} \)

\(^{\dagger}\)Delhi College of Arts and Commerce, University of Delhi,
Netaji Nagar, New Delhi 110 023, India
e-mail : dishna2@yahoo.in

\(^{\ddagger}\)Department of Mathematics, University of Delhi,
Delhi 110 007, India
e-mail : pooja.20.sh@gmail.com

Abstract : The composition operators of \((\alpha, \beta)\)-normal operators and their adjoints have been characterized on \(L^2(m)\).

Keywords : \((\alpha, \beta)\)-normal operators; composition operators; normal operators; adjoint of an operator.

2010 Mathematics Subject Classification : 47B20; 47B38; 47B33; 47B15; 47A05.

1 Introduction and Statement of Results

Let \(H \) be an infinite dimensional complex separable Hilbert space and \(\mathcal{B}(H) \) be the algebra of all bounded linear operators defined on \(H \). An operator \(T \in \mathcal{B}(H) \) is called normal if \(TT^* = T^*T \), hyponormal if \(T^*T \geq TT^* \) which is equivalent to the condition \(\|T^*x\| \leq \|Tx\| \), for all \(x \in H \). For real numbers \(\alpha \) and \(\beta \) with \(0 \leq \alpha \leq 1 \leq \beta \), an operator \(T \) acting on a Hilbert space \(H \) is called \((\alpha, \beta)\)-normal if \(\alpha^2T^*T \leq TT^* \leq \beta^2T^*T \), which is equivalent to the condition \(\alpha\|Tx\| \leq \|T^*x\| \leq \beta\|Tx\| \), for all \(x \in H \) \([1,2]\). For \(\alpha = 1 = \beta \), \(T \) is a normal operator. For \(\alpha = 1 \), we observe from the left inequality that \(T^* \) is hyponormal and for \(\beta = 1 \), from the right inequality we obtain that \(T \) is hyponormal. Takagi and K. Yokouchi \([3]\) initiated the study of multiplication and composition operators between \(L^p\)-spaces. The study of non-normal classes of composition operators initiated by R.K. Singh \([4]\)
in 1974 and later this was studied by many authors [5]-[13]. In this paper, we obtain a necessary and sufficient condition for an operator and its adjonits to be \((\alpha, \beta)\)-normal composition operator.

Let \((X, \Sigma, m)\) be a sigma-finite measure space. The space \(L^2(m)\) is defined as:

\[
L^2(m) = \left\{ f : X \to \mathbb{C} : f \text{ is a measurable function and } \int_X |f|^2 dm < \infty \right\}
\]

with \(\|f\|_2 = \left(\int_X |f|^2 dm \right)^{\frac{1}{2}}\).

Radon Nikodym Theorem. If \((X, \Sigma, m)\) is a \(\sigma\)-finite measure space and \(m'\) is a \(\sigma\)-finite measure on \(\Sigma\) such that \(m'\) is absolutely continuous with respect to \(m\), then there exists a finite-valued non-negative measurable function \(h\) on \(X\) such that for each \(A \in \Sigma\), \(m'(A) = \int_A h dm\). Also, \(h\) is unique in the sense that if \(m'(A) = \int_A g dm\) for each \(A \in \Sigma\), then \(h = g\) a.e.(\(m\)).

A mapping \(T : X \to X\) is said to be measurable if \(T^{-1}(A) \in \Sigma\) whenever \(A \in \Sigma\). A measurable transformation \(T : X \to X\) is called non-singular if the pre-image of every null set under \(T\) is a null set. Such a transformation induces a well defined composition operator

\[
C_T : L^2(m) \to L^2(m) \text{ as } C_T f = f \circ T \text{ for each } f \in L^2(m), \text{ if}
\]

(i) the measure \(m \circ T^{-1}\) is absolutely continuous with respect to \(m\), and

(ii) the Radon-Nikodym derivative \(h = \frac{d(m\circ T^{-1})}{dm}\) is essentially bounded.

Every essentially bounded complex-valued measurable function \(\theta\) induces a bounded operator \(M_{\theta}\) on \(L^2(m)\) which is defined by \(M_{\theta} f = \theta f\) for every \(f \in L^2(m)\).

Let \(E \subseteq X\), then the characteristic function of \(E\), written as \(\chi_E\), is the function on \(X\) defined by

\[
\chi_E(x) = 1 \text{ for } x \in E \text{ and } \chi_E(x) = 0 \text{ for } x \in (X - E)
\]

2 \((\alpha, \beta)\)-Normal Composition Operators

In this section we obtain a necessary and sufficient condition for an operator to be \((\alpha, \beta)\)-normal composition operator.

The following lemma due to Harrington and Whitley [7 Lemma 1] is instrumental in the subsequent results.

Lemma 2.1. Let \(P\) denote the projection of \(L^2(m)\) on \(R(C_T)\).
(\alpha, \beta)\text{-Normal composition operators}

(a) \(C_T^* C_T f = h f \) and \(C_T C_T^* f = (h \circ T)Pf \) for all \(f \) in \(L^2(m) \).

(b) \(\mathcal{R}(C_T^*) = \{ f \in L^2(m) : f \text{ is } T^{-1}(\Sigma)\text{-measurable} \} \).

Theorem 2.2. A composition operator \(C_T \) on \(L^2(m) \) is \((\alpha, \beta)\text{-normal}\) (0 \(\leq \) \(\alpha \leq 1 \leq \beta \)) iff \(\alpha^2 h \leq (h \circ T)P \leq \beta^2 h \) a.e.

Proof. By definition of \((\alpha, \beta)\text{-normal operators}, \ C_T \) is \((\alpha, \beta)\text{-normal}\) (0 \(\leq \alpha \leq 1 \leq \beta \))

iff \(\alpha^2 C_T^* C_T \leq C_T C_T^* \leq \beta^2 C_T^* C_T \)

i.e. \(\alpha^2 (C_T^* C_T f, f) \leq (C_T C_T^* f, f) \leq \beta^2 (C_T^* C_T f, f) \) \(\forall f \in L^2(m) \)

iff \(\alpha^2 (M_h f, f) \leq (M_{(h \circ T)}P f, f) \leq \beta^2 (M_h f, f) \) \(\forall f \in L^2(m) \)

iff \(\alpha^2 (M_h \chi_E, \chi_E) \leq (M_{(h \circ T)}P \chi_E, \chi_E) \leq \beta^2 (M_h \chi_E, \chi_E), \)

for every \(\chi_E \) of \(E \) in \(\Sigma \) such that \(m(E) < \infty \)

iff \(\int_E \alpha^2 h \, dm \leq \int_E (h \circ T)P \, dm \leq \int_E \beta^2 h \, dm, \)

for every \(E \) in \(\Sigma \) such that \(m(E) < \infty \)

iff \(\alpha^2 h \leq (h \circ T)P \leq \beta^2 h \) a.e., for 0 \(\leq \alpha \leq 1 \leq \beta \) . \(\square \)

Theorem 2.3. An operator \(T \in \mathcal{B}(H) \) is \((\alpha, \beta)\text{-normal}\) (0 \(\leq \alpha \leq 1 \leq \beta \)) iff \(k^2(TT^*) + 2k\alpha^2(T^*T) + TT^* \geq 0 \) a.e. and \(k^2(T^*T) + 2k(TT^*) + \beta^4(T^*T) \geq 0 \) a.e., for all \(k \in \mathbb{R} \).

Proof. For all \(x \in H \) and 0 \(\leq \alpha \leq 1 \leq \beta \).

\(k^2(TT^*) + 2k\alpha^2T^*T + TT^* \geq 0 \) a.e. and

\(k^2(T^*T) + 2k(TT^*) + \beta^4(T^*T) \geq 0 \) a.e. for all \(k \in \mathbb{R} \)

iff \(\langle (k^2TT^* + 2k\alpha^2T^*T + TT^*)x, x \rangle \geq 0 \) a.e. and

\(\langle (k^2T^*T + 2kTT^* + \beta^4T^*T)x, x \rangle \geq 0 \) a.e. for all \(k \in \mathbb{R} \)

iff \(k^2(T^*x, x) + 2k\alpha^2(T^*Tx, x) + \langle TT^*x, x \rangle \geq 0 \) a.e. and

\(k^2(T^*Tx, x) + 2k(TT^*x, x) + \beta^4(T^*Tx, x) \geq 0 \) a.e. for all \(k \in \mathbb{R} \)

iff \(k^2(T^*x, T^*x) + 2k\alpha^2(Tx, Tx) + \langle T^*x, T^*x \rangle \geq 0 \) a.e. and

\(k^2(Tx, Tx) + 2k(T^*x, T^*x) + \beta^4(Tx, Tx) \geq 0 \) a.e. for all \(k \in \mathbb{R} \)

iff \(k^2\|T^*x\|^2 + 2k\alpha^2\|Tx\|^2 + \|T^*x\|^2 \geq 0 \) a.e. and

\(k^2\|Tx\|^2 + 2k\|T^*x\|^2 + \beta^4\|Tx\|^2 \geq 0 \) a.e. for all \(k \in \mathbb{R} \).
Using elementary properties of real quadratic forms

\[k^2TT^* + 2k\alpha^2T^*T + TT^* \geq 0 \text{ a.e. and} \]
\[k^2T^*T + 2kTT^* + \beta^4TT^* \geq 0 \text{ a.e. for all } k \in \mathbb{R} \]
iff \[4\alpha^4\|Tx\|^4 \leq 4\|T^*x\|^4 \text{ and } 4\|T^*x\|^4 \leq 4\beta^4\|Tx\|^4 \]
iff \[\alpha\|Tx\| \leq \|T^*x\| \text{ and } \|T^*x\| \leq \beta\|Tx\| \]
iff \[T \in B(H) \text{ is } (\alpha, \beta)\text{-normal operator} \]
iff \[\alpha\|Tx\| \leq \|T^*x\| \leq \beta\|Tx\|, \quad 0 \leq \alpha \leq 1 \leq \beta \]

Theorem 2.4. A composition operator \(C_T \) on \(L^2(m) \) is \((\alpha, \beta)\text{-normal operator} \) \((0 \leq \alpha \leq 1 \leq \beta)\) iff \(k^2(h \circ T)P + 2k\alpha^2h + (h \circ T)P \geq 0 \text{ a.e. and } k^2h + 2k(h \circ T)P + \beta^4h \geq 0 \text{ a.e. for all } k \in \mathbb{R} \).

Proof. By Theorem 2.3, \(C_T \) is \((\alpha, \beta)\text{-normal operator} \) \((0 \leq \alpha \leq 1 \leq \beta)\)
iff \[\langle (k^2C_T^* + 2k\alpha^2C_T^* + C_T^*C_T^*)T(f), T(f) \rangle \geq 0 \text{ and} \]
\[\langle (k^2C_T^*T + 2kC_T^*T + \beta^4C_T^*T)T(f), T(f) \rangle \geq 0 \]
for all \(f \in L^2(m) \) and for all \(k \in \mathbb{R} \)
iff \[\langle (k^2C_T^* + 2k\alpha^2C_T^* + C_T^*C_T^*)\chi_E, \chi_E \rangle \geq 0 \text{ and} \]
\[\langle (k^2C_T^*T + 2kC_T^*T + \beta^4C_T^*T)\chi_E, \chi_E \rangle \geq 0 \]
for every \(\chi_E \) of \(E \) in \(\Sigma \) such that \(m(E) < \infty \) and \(k \in \mathbb{R} \)
iff \[\langle (k^2M_{(h \circ T)}P + 2k\alpha^2M_h + M_{(h \circ T)}P)\chi_E, \chi_E \rangle \geq 0 \text{ and} \]
\[\langle (k^2M_h + 2kM_{(h \circ T)}P + \beta^4M_h)\chi_E, \chi_E \rangle \geq 0 \]
for every \(\chi_E \) of \(E \) in \(\Sigma \) such that \(m(E) < \infty \) and \(k \in \mathbb{R} \)
iff \[\int (k^2M_{(h \circ T)}P + 2k\alpha^2M_h + M_{(h \circ T)}P)\chi_E d\mu \geq 0 \text{ and} \]
\[\int (k^2M_h + 2kM_{(h \circ T)}P + \beta^4M_h)\chi_E d\mu \geq 0 \]
for every \(\chi_E \) of \(E \) in \(\Sigma \) such that \(m(E) < \infty \) and \(k \in \mathbb{R} \)
iff \[\int (k^2(h \circ T)P + 2k\alpha^2h + (h \circ T)P)dm \geq 0 \text{ and} \]
\[\int (k^2h + 2k(h \circ T)P + \beta^4h)dm \geq 0 \]
for every \(E \) in \(\Sigma \) such that \(m(E) < \infty \) and \(k \in \mathbb{R} \)
iff \[k^2(h \circ T)P + 2k\alpha^2h + (h \circ T)P \geq 0 \text{ a.e. and} \]
\[k^2h + 2k(h \circ T)P + \beta^4h \geq 0 \text{ a.e. for all } k \in \mathbb{R} \].

Corollary 2.5. A composition operator \(C_T \) on \(L^2(m) \) with dense range is \((\alpha, \beta)\text{-normal} \) \((0 \leq \alpha \leq 1 \leq \beta)\) iff \(k^2(h \circ T) + 2k\alpha^2h + (h \circ T) \geq 0 \text{ a.e. and } k^2h + 2k(h \circ T) + \beta^4h \geq 0 \text{ a.e. for all } k \in \mathbb{R} \).
Corollary 2.6. A composition operator C_T on $L^2(m)$ with dense range is (α, β)-normal $(0 \leq \alpha \leq 1 \leq \beta)$ iff $\alpha^2 h \leq (h \circ T) \leq \beta^2 h$ a.e.

Corollary 2.7. A composition operator C_T on $L^2(m)$ is (α, β)-normal $(0 \leq \alpha \leq 1 \leq \beta)$ iff for all $f \in L^2(m)$

(a) $\|\alpha h^\frac{1}{2}f\| \leq \|(h \circ T)h^\frac{1}{2}f\| \leq \|\beta h^\frac{1}{2}f\|$.

(b) $\|\alpha h^\frac{1}{2}Pf\| \leq \|(h \circ T)h^\frac{1}{2}Pf\| \leq \|\beta h^\frac{1}{2}Pf\|$

Theorem 2.8. A composition operator C_T on $L^2(m)$ is (α, β)-normal $(0 \leq \alpha \leq 1 \leq \beta)$ iff for all $f \in L^2(m)$

(a) $\|\alpha h^\frac{1}{2}f\| \leq \|(h \circ T)h^\frac{1}{2}f\| \leq \|\beta h^\frac{1}{2}f\|$.

(b) $\|\alpha h^\frac{1}{2}Pf\| \leq \|(h \circ T)h^\frac{1}{2}Pf\| \leq \|\beta h^\frac{1}{2}Pf\|$

Proof. Let a composition operator C_T on $L^2(m)$ be a (α, β)-normal operator $(0 \leq \alpha \leq 1 \leq \beta)$.

Then by Corollary 2.7(b)

$\|\alpha h^\frac{1}{2}Pf\| \leq \|(h \circ T)h^\frac{1}{2}Pf\| \leq \|\beta h^\frac{1}{2}Pf\|

Let E be a set of finite measure in Σ. Let $A = T^{-1}(E)$. As A is $T^{-1}(\Sigma)$ measurable, therefore $P \chi_A = \chi_A$ and

$0 \leq \|(h \circ T)h^\frac{1}{2}P \chi_A\|^2 - \|\alpha h^\frac{1}{2}P \chi_A\|^2$

$= \int_A (h \circ T - \alpha h) dm$

$= \int_A (h \circ T) dm - \alpha d(mT^{-1})(A)$

$= \int_A (h \circ T) C_T \chi_E dm - \alpha d(mT^{-1})(A)$

$= \int_A (h \circ T)(\chi_E \circ T) dm - \alpha d(mT^{-1})(A)$

$= \int_E \left(h^2 - \alpha \frac{d(mT^{-2})}{dm} \right) dm.$

Therefore,

$h^2 - \alpha \frac{d(mT^{-2})}{dm} \geq 0 \text{ a.e.}$

or $h^2 \geq \alpha \frac{d(mT^{-2})}{dm} \text{ a.e.}$ (2.1)

Also,

$0 \leq \|\beta h^\frac{1}{2}P \chi_A\|^2 - \|(h \circ T)h^\frac{1}{2}P \chi_A\|^2$

$= \int_E \left(\beta \frac{d(mT^{-2})}{dm} - h^2 \right) dm.$
Therefore
\[
\beta \frac{d m T^{-2}}{dm} - h^2 \geq 0 \text{ a.e.}
\]
or
\[
\beta \frac{d m T^{-2}}{dm} \geq h^2 \text{ a.e.}
\] (2.2)

Combining (2.1) and (2.2)
\[
\alpha \frac{d m T^{-2}}{dm} \leq h^2 \leq \beta \frac{d m T^{-2}}{dm} \text{ a.e.}
\]

Conversely, suppose that
\[
\alpha \frac{d(mT^{-2})}{dm} \leq h^2 \leq \beta \frac{d(mT^{-2})}{dm} \text{ a.e.}
\]

Then, for any \(E\) in \(\Sigma\) such that \(m(E) < \infty\), the argument above shows that the inequality of Corollary 2.7(b) holds for \(f = \chi_{T^{-1}(E)}\). Suppose that \(f\) is \(T^{-1}(\Sigma)\)-measurable and simple. Then, we can write
\[
f = \sum_j a_j A_j
\]
where \(A_j\)'s are disjoint sets in \(T^{-1}(\Sigma)\).

Then,
\[
\|h^{1/2} Pf\|^2 = \sum \|a_j h^{1/2} \chi_{A_j}\|^2 \\
\geq \sum |a_j| (h \circ T)^{1/2} \chi_{A_j}\|^2 \\
= \| (h \circ T)^{1/2} Pf\|^2
\]

Similarly,
\[
\|\alpha h^{1/2} Pf\|^2 \leq \| (h \circ T)^{1/2} Pf\|^2
\]

As \(T^{-1}(\Sigma)\)-measurable simple functions are dense in \(R(C_T)\), the inequality
\[
\|\alpha h^{1/2} Pf\| \leq \| (h \circ T)^{1/2} Pf\| \leq \| \beta h^{1/2} Pf\| \text{ holds for all } f \in L^2(m)
\]
and hence, \(C_T\) is \((\alpha, \beta)\)-normal \((0 \leq \alpha \leq 1 \leq \beta)\). \(\square\)

Example 2.9. Let \(X = \mathbb{N}\) and let \(m\) be the counting measure.
Define \(T : \mathbb{N} \rightarrow \mathbb{N}\) as
\[
T(n) = 2n \ \forall \ n \in \mathbb{N}
\]

Then, \(h(2n) = 1 \ \forall \ n \in \mathbb{N}\).
By Corollary 2.6, C_T is (α, β)-normal $(0 \leq \alpha \leq 1 \leq \beta)$ if

$$\alpha^2 h \leq h \circ T \leq \beta^2 h, \quad \text{a.e.}$$

if

$$\alpha^2 h(2n) \leq (h \circ T)(2n) \leq \beta^2 h(2n) \quad \forall \ n \in \mathbb{N}$$

if

$$\alpha^2 \cdot 1 \leq h(4n) \leq \beta^2 \cdot 1 \quad \forall \ n \in \mathbb{N}$$

if

$$\alpha^2 \leq 1 \leq \beta^2, \quad \text{which is true since } 0 \leq \alpha \leq 1 \leq \beta.$$

Hence, the composition operator induced by above T is (α, β)-normal operator $(0 \leq \alpha \leq 1 \leq \beta)$.

3 Adjoint of (α, β)-Normal Composition Operators

In this section we explore the conditions under which the adjoint of a composition operator is (α, β)-normal operator.

Theorem 3.1. An operator $C_T^* \in \mathcal{B}(L^2(m))$ is (α, β)-normal $(0 \leq \alpha \leq 1 \leq \beta)$ if $\alpha^2(h \circ T)P \leq h \leq \beta^2(h \circ T)P$.

Proof. By definition of (α, β)-normal operator, C_T^* is (α, β)-normal $(0 \leq \alpha \leq 1 \leq \beta)$

iff $\alpha^2 C_T C_T^* \leq C_T^* C_T \leq \beta^2 C_T C_T^*$

iff $\alpha^2 \langle C_T C_T^* f, f \rangle \leq \langle C_T^* C_T f, f \rangle \leq \beta^2 \langle C_T C_T^* f, f \rangle \quad \forall \ f \in L^2(m)$

iff $\alpha^2 \langle M_{(h \circ T)} P f, f \rangle \leq \langle M_h f, f \rangle \leq \beta^2 \langle M_{(h \circ T)} P f, f \rangle \quad \forall \ f \in L^2(m)$

iff $\alpha^2 \langle M_{(h \circ T)} P \chi_E, \chi_E \rangle \leq \langle M_h \chi_E, \chi_E \rangle \leq \beta^2 \langle M_{(h \circ T)} P \chi_E, \chi_E \rangle \quad \forall \ f \in L^2(m)$

and for every χ_E of E in Σ such that $m(E) < \infty$

iff $\int_E \alpha^2(h \circ T)Pdm \leq \int_E hdm \leq \int_E \beta^2(h \circ T)Pdm$

for every E in Σ such that $m(E) < \infty$

iff $\alpha^2(h \circ T)P \leq h \leq \beta^2(h \circ T)P$ a.e. for $0 \leq \alpha \leq 1 \leq \beta$.

Theorem 3.2. An operator $C_T^* \in \mathcal{B}(L^2(m))$ is (α, β)-normal $(0 \leq \alpha \leq 1 \leq \beta)$ if

$$k^2 h + 2k \alpha^2 (h \circ T)P + h \geq 0 \quad \text{a.e. and}$$

$$k^2(h \circ T)P + 2kh + \beta^4(h \circ T)P \geq 0 \quad \text{a.e. for all } k \in \mathbb{R}.$$

Proof. By Theorem 2.3 $C_T^* \in \mathcal{B}(L^2(m))$ is (α, β)-normal $(0 \leq \alpha \leq 1 \leq \beta)$

iff

$$\langle (k^2 M_h + 2k \alpha^2 M_{(h \circ T)} P + M_h) \chi_E, \chi_E \rangle \geq 0$$

and

$$\langle (k^2 M_{(h \circ T)} P + 2k M_h + \beta^4 M_{(h \circ T)} P) \chi_E, \chi_E \rangle \geq 0$$

for every χ_E of E in Σ such that $m(E) < \infty$ and for all $k \in \mathbb{R}$.
Corollary 3.3. A composition operator C_T^* on $L^2(m)$ with dense range is (α, β)-normal $\langle 0 \leq \alpha \leq 1 \leq \beta \rangle$ iff $k^2 h + 2k\alpha^2 (h \circ T) + h \geq 0$ a.e. and $k^2 (h \circ T) + 2kh + \beta^4 (h \circ T) \geq 0$ a.e. for all $k \in \mathbb{R}$.

Corollary 3.4. Let C_T^* on $L^2(m)$ be a composition operator with dense range. Then, C_T^* is (α, β)-normal $\langle 0 \leq \alpha \leq 1 \leq \beta \rangle$ iff $\alpha^2 (h \circ T) \leq h \leq \beta^2 (h \circ T) \geq 0$ a.e.

Corollary 3.5. For an operator, the adjoint C_T^* of composition operator is (α, β)-Normal $\langle 0 \leq \alpha \leq 1 \leq \beta \rangle$ iff

(a) $\sum_{\sigma(h)} \subseteq T^{-1}(\Sigma)$, and

(b) $\alpha^2 (h \circ T) \leq h \leq \beta^2 (h \circ T)$ a.e., where $\sum_{\sigma(h)}$ denote the relative completion of the sigma-algebra generated by $\{ A \cap \text{support of } h : A \in \Sigma \}$.

Proof. Suppose C_T^* is (α, β)-Normal $\langle 0 \leq \alpha \leq 1 \leq \beta \rangle$.

Since $\sum_{\sigma(h)} \subseteq T^{-1}(\Sigma)$, therefore $\ker C_T^* \subseteq \ker C_T$.

Therefore, (a) holds and so h is $T^{-1}(\Sigma)$-measurable.

Hence, the set $A = \{ s : \alpha^2 h(T(s)) > h(s) > \beta^2 h(T(s)) \}$ belongs to $T^{-1}(\Sigma)$ and so A can be written as disjoint union of sets A_n of finite measure which also belong to $T^{-1}(\Sigma)$.

Since, C_T^* is (α, β)-Normal operator

$$0 \leq (\langle C_T^* C_T - \alpha^2 C_T C_T^* \rangle \chi_{A_n}, \chi_{A_n})$$

$$= \langle h \chi_{A_n}, \chi_{A_n} \rangle - \langle \alpha^2 (h \circ T) P \chi_{A_n}, \chi_{A_n} \rangle$$

$$= \int_{A_n} (h - \alpha^2 (h \circ T)) dm \leq 0.$$

Hence, $m(A_n) = 0, \forall \ n \in \mathbb{N}$ and therefore (b) holds.

Conversely, let (a) and (b) hold.

Write $f = f_1 + f_2$, where $f_1 \in \overline{R(C_T)}$ and $f_2 \in \overline{R(C_T)^\perp}$.
We have,
\[\langle (C^*_TC - \alpha^2CTC^*_T), f \rangle = \langle hf - \alpha^2(h \circ T)Pf, f \rangle = \langle h(f_1 + f_2) - \alpha^2(h \circ T)P(f_1 + f_2), (f_1 + f_2) \rangle\]
since, \(\alpha^2(h \circ T)f_1\) is \(T^{-1}(\Sigma)\)-measurable, therefore it belongs to \(\text{R}(C_T)\) and so \(\langle \alpha^2(h \circ T)Pf_1, f_2 \rangle = 0\).
Since, \(f_2 \in \ker C_T\). Therefore, \(hf_2 = C^*_Tf_2 = 0\) and \(\langle hf_1, f_2 \rangle = \langle hf_2, f_1 \rangle = 0\).
So,
\[\langle (C^*_TC - \alpha^2CTC^*_T) \rangle = \langle hf_1, f_1 \rangle - \alpha^2\langle (h \circ T)f_1, f_1 \rangle = \int(h - \alpha^2(h \circ T))|f_1|^2 \, dm \geq 0\]
Similarly, \(\beta^2CTC^*_T \geq C^*_TC_T\).
Therefore, \(C^*_T\) is \((\alpha, \beta)\)-normal operator.

Acknowledgements: The authors thank the referees for their comments and suggestions. The second author is supported by the Junior Research Fellowship of Council of Scientific and Industrial Research, India (Grant no. 09/045(1139)/2011-EMR-I).

References

(Received 2 January 2014)
(Accepted 13 January 2015)