Rate of Convergence of P-Iteration and S-Iteration for Continuous Functions on Closed Intervals

Prayong Sainuan

Department of Mathematics, Faculty of Sciences and Agricultural Technology Rajamangala University of Technology Lanna, Chiang Mai 50300, Thailand
e-mail: psainuan@hotmail.com

Abstract: In this paper, we first give a necessary and sufficient condition for convergence of P-iteration to a fixed point of continuous functions on an arbitrary interval and prove equivalence of P-iteration and S-iteration. We also compare the rate of convergence between P-iteration and S-iteration. Some numerical examples for comparing the rate of convergence of those two methods are also given.

Keywords: rate of convergence; P-iteration; S-iteration; continuous function; closed interval.

2010 Mathematics Subject Classification: 47H09; 47H10.

1 Introduction

Let E be a closed interval on the real line and $f : E \to E$ be a continuous function. A point $p \in E$ is a fixed point of f if $f(p) = p$. We denote by $F(f)$ the set of fixed points of f. It is known that if E also bounded, then $F(f)$ is nonempty. The Mann iteration (see [1]) is defined by $u_1 \in E$ and

$$u_{n+1} = (1 - \alpha_n) u_n + \alpha_n f(u_n)$$

This research was supported by Rajamangala University of Technology Lanna, Chiang Mai, Thailand.

Copyright © 2015 by the Mathematical Association of Thailand. All rights reserved.
for all \(n \geq 1 \), where \(\{\alpha_n\}_{n=1}^{\infty} \) is a sequence in \([0,1]\), and will be denoted by \(M(u_1, \alpha_n, f) \). The Ishikawa iteration (see [2]) is defined by \(s_1 \in E \) and

\[
\begin{align*}
 t_n &= (1 - \beta_n) s_n + \beta_n f(s_n) \\
 s_{n+1} &= (1 - \alpha_n) s_n + \alpha_n f(t_n)
\end{align*}
\]

(1.2)

for all \(n \geq 1 \), where \(\{\alpha_n\}_{n=1}^{\infty}, \{\beta_n\}_{n=1}^{\infty} \) are sequences in \([0,1]\), and will be denoted by \(I(s_1, \alpha_n, \beta_n, f) \). The S-iteration (see [3]) is defined by \(q_1 \in E \) and

\[
\begin{align*}
 r_n &= (1 - \beta_n) q_n + \beta_n f(q_n) \\
 q_{n+1} &= (1 - \alpha_n) f(q_n) + \alpha_n f(r_n)
\end{align*}
\]

(1.3)

for all \(n \geq 1 \), where \(\{\alpha_n\}_{n=1}^{\infty}, \{\beta_n\}_{n=1}^{\infty} \) are sequences in \([0,1]\), and will be denoted by \(S(q_1, \alpha_n, \beta_n, f) \).

It was shown in [4] that the Mann and Ishikawa iterations are equivalent for the class of Zamfirescu operators. In 2006, Babu and Prasad [5] showed that the Mann iteration converges faster than the Ishikawa iteration for the class of operators. Two years later, Qing and Rhoades [6] provided an example to show that the claim of Babu and Prasad is false. In 2013, Kosol [3] showed that the S-iteration converges faster than the Ishikawa iteration on an arbitrary interval. In 2011, Phuengrattana and Suantai [7] introduced a new three-step iteration, called SP-iteration, and showed that it converges faster than Mann, Ishikawa, Noor-iterations.

Motivated by the above results, we modify S and SP-iterations for construction a new iteration as follows: The P-iteration is defined by \(x_1 \in E \) and

\[
\begin{align*}
 z_n &= (1 - \gamma_n) x_n + \gamma_n f(x_n) \\
 y_n &= (1 - \beta_n) z_n + \beta_n f(z_n) \\
 x_{n+1} &= (1 - \alpha_n) f(z_n) + \alpha_n f(y_n)
\end{align*}
\]

(1.4)

for all \(n \geq 1 \), where \(\{\alpha_n\}_{n=1}^{\infty}, \{\beta_n\}_{n=1}^{\infty} \) and \(\{\gamma_n\}_{n=1}^{\infty} \) are sequences in \([0,1]\), and will be denoted by \(P(x_1, \alpha_n, \beta_n, \gamma_n, f) \).

In this paper, we give a necessary and sufficient condition for the convergence of the P-iteration of continuous non-decreasing functions on an arbitrary interval. We also prove that if the S-iteration converges, then the P-iteration converges and converges faster than the S-iteration for the class of continuous and non-decreasing functions. Moreover, we present the numerical examples for the P-iteration to compare with the Ishikawa and the S-iterations.

2 Preliminaries

In this section we recall some lemmas, definition, theorems and known results in the existing literature on this concept.
Lemma 2.1 (3). Let E be a closed interval on the real line and $f : E \to E$ be a continuous function. Let $\{\alpha_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ be sequences in $[0, 1]$. For $q_1 \in E$, let $\{q_n\}_{n=1}^{\infty}$ be the sequence defined by (1.3). Then the following hold:

(i) If $f(q_1) < q_1$, then $f(q_n) \leq q_n$ for all $n \geq 1$ and $\{q_n\}_{n=1}^{\infty}$ is non-increasing.

(ii) If $f(q_1) > q_1$, then $f(q_n) \geq q_n$ for all $n \geq 1$ and $\{q_n\}_{n=1}^{\infty}$ is non-decreasing.

Proposition 2.2 (3). Let E be a closed interval on the real line and $f : E \to E$ be a continuous and non-decreasing function such that $F(f)$ is nonempty and bounded with $q_1 \geq \sup \{p \in E : p = f(p)\}$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in $[0, 1]$. If $f(q_1) > q_1$, then the sequence $\{q_n\}$ defined by S-iteration does not converge to a fixed point of f.

Proposition 2.3 (3). Let E be a closed interval on the real line and $f : E \to E$ be a continuous and non-decreasing function such that $F(f)$ is nonempty and bounded with $q_1 \leq \sup \{p \in E : p = f(p)\}$. Let $\{\alpha_n\}$ and $\{\beta_n\}$ be sequences in $[0, 1]$. If $f(q_1) < q_1$, then the sequence $\{q_n\}$ defined by S-iteration does not converge to a fixed point of f.

Definition 2.4 (7). Let E be a closed interval on the real line and $f : E \to E$ be a continuous function. Suppose that $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are two iterations which converge to the fixed point p of f. Then $\{x_n\}_{n=1}^{\infty}$ is said to converge faster than $\{y_n\}_{n=1}^{\infty}$ if $|x_n - p| \leq |y_n - p|$ for all $n \geq 1$.

Theorem 2.5 (3). Let E be a closed interval on the real line and $f : E \to E$ be a continuous and non-decreasing function such that $F(f)$ is nonempty and bounded. For $s_1 = q_1 \in E$, let $\{s_n\}$ and $\{q_n\}$ be the sequences defined by (1.2) and (1.3), respectively. If the Ishikawa iteration $\{S_n\}$ converges to $p \in F(f)$, then the S-iteration $\{q_n\}$ converges to p. Moreover, the S-iteration converges faster than the Ishikawa iteration.

3 Main Results

We first give some useful facts for our main results.

Lemma 3.1. Let E be a closed interval on the real line and $f : E \to E$ be a continuous and non-decreasing function. Let $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{\gamma_n\}_{n=1}^{\infty}$ be sequences in $[0, 1]$. For $x_1 \in E$, let $\{x_n\}_{n=1}^{\infty}$ be defined by P-iteration. Then the following hold:

(i) If $f(x_1) < x_1$, then $f(x_n) \leq x_n$ for all $n \geq 1$ and $\{x_n\}_{n=1}^{\infty}$ is non-increasing.

(ii) If $f(x_1) > x_1$, then $f(x_n) \geq x_n$ for all $n \geq 1$ and $\{x_n\}_{n=1}^{\infty}$ is non-decreasing.
Since induction, we can conclude that \(f^n(y) \leq z_k \). Since \(f \) is non-decreasing, we have \(f(z_k) \leq y_k \leq z_k \). By (1.4), we get \(f(z_k) \leq y_k \leq z_k \). Since \(f \) is non-decreasing, we have \(f(y_k) \leq f(z_k) \leq y_k \leq z_k \).

It follows from (1.4), that \(f(y_k) \leq x_{k+1} \leq f(z_k) \). This implies \(x_{k+1} \leq f(z_k) \leq y_k \).

Since \(f \) is non-decreasing, we have \(f(x_{k+1}) \leq f(y_k) \). Thus \(f(x_{k+1}) \leq x_{k+1} \).

By induction, we can conclude that \(f(x_n) \leq x_n \) for all \(n \geq 1 \). This together with (1.4), we have \(y_n \leq z_n \leq x_n \) for all \(n \geq 1 \). Since \(f \) is non-decreasing, we have \(f(y_n) \leq f(z_n) \leq f(x_n) \) for all \(n \leq 1 \). It follows that \(x_{n+1} = (1 - \alpha_n)f(z_n) + \alpha_n f(y_n) \leq f(z_n) \leq f(x_n) \leq x_n \) for all \(n \geq 1 \). Thus \(\{x_n\} \) is non-increasing.

(ii) By using the same argument as in (i), We obtain the desired result.

Theorem 3.2. Let \(E \) be a closed interval on the real line and \(f : E \to E \) be a continuous and non-decreasing function. For \(x_1 \in E \), let \(\{x_n\}_{n=1}^\infty \) be defined by (1.4), where \(\{\alpha_n\}_{n=1}^\infty \), \(\{\beta_n\}_{n=1}^\infty \) and \(\{\gamma_n\}_{n=1}^\infty \) are sequences in \([0,1]\) and \(\lim_{n \to \infty} \beta_n = \lim_{n \to \infty} \gamma_n = 0 \). Then \(\{x_n\}_{n=1}^\infty \) is bounded if and only if \(\{x_n\}_{n=1}^\infty \) converges to a fixed point of \(f \).

Proof. If \(\{x_n\} \) is convergent, then it is bounded. Now, assume that \(\{x_n\} \) is bounded. We will show that \(\{x_n\} \) is convergent. If \(f(x_1) = x_1 \), by (1.4) we have

\[
 z_1 = (1 - \gamma_1)x_1 + \gamma_1 f(x_1) = x_1 \\
 y_1 = (1 - \beta_1)z_1 + \beta_1 f(z_1) = x_1 \\
 x_2 = (1 - \alpha_1)f(z_1) + \alpha_1 f(y_1) = x_1.
\]

We can show by induction that \(x_n = x_1 \) for all \(n \geq 1 \). Thus \(\{x_n\} \) is convergent.

Suppose that \(f(x_1) \neq x_1, f(x_1) < x_1 \) or \(f(x_1) > x_1 \). By Lemma 3.1, we obtain that \(\{x_n\} \) is non-increasing or non-decreasing. Since \(\{x_n\} \) is bounded, it implies that \(\{x_n\} \) is convergent. Next, we prove that \(\{x_n\} \) converges to a fixed point of \(f \). Let \(\lim_{n \to \infty} x_n = p \) for some \(p \in E \). By continuity of \(f \) and \(\{x_n\} \) is bounded, we have \(\{f(x_n)\} \) is bounded. By (1.4), we obtain \(z_n = (1 - \gamma_n)x_n + \gamma_n f(x_n) = x_n + \gamma_n(f(x_n) - x_n) \). Since \(\lim_{n \to \infty} \gamma_n = 0 \), we have \(\lim_{n \to \infty} z_n = \lim_{n \to \infty} x_n = p \).

By continuity of \(f \) and \(\{x_n\} \) is bounded, we have \(\{z_n\} \) and \(\{f(z_n)\} \) are bounded.

By (1.4), we get \(y_n = (1 - \beta_n)z_n + \beta_n f(z_n) = z_n + \beta_n(f(z_n) - z_n) \).

Since \(\lim_{n \to \infty} \beta_n = 0 \), we have \(\lim_{n \to \infty} y_n = \lim_{n \to \infty} z_n = p \).

By continuity of \(f \), we have \(\lim_{n \to \infty} (f(y_n) - f(z_n)) = f(p) - f(p) = 0 \).

From \(x_{n+1} = f(z_n) + \alpha_n(f(y_n) - f(z_n)) \) and continuity of \(f \), we have

\[
 p = \lim_{n \to \infty} x_{n+1} \\
 = \lim_{n \to \infty} f(z_n) + \lim_{n \to \infty} \alpha_n(f(y_n) - f(z_n)) \\
 = \lim_{n \to \infty} f(z_n) \\
 = f(p).
\]

Hence \(p \) is a fixed point of \(f \) and \(\{x_n\} \) converge to \(p \).
Lemma 3.3. Let E be a closed interval on the real line and $f : E \to E$ be a continuous and non-decreasing function. For $x_1 \in E$, let $\{x_n\}_{n=1}^{\infty}$ be the P-iteration defined by (1.4), where $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{\gamma_n\}_{n=1}^{\infty}$ are sequences in $[0,1]$. Then we have the following:

(i) If $p \in F(f)$ with $x_1 > p$, then $x_n \geq p$ for all $n \geq 1$.

(ii) If $p \in F(f)$ with $x_1 < p$, then $x_n \leq p$ for all $n \geq 1$.

Proof. (i) Suppose that $p \in F(f)$ and $x_1 > p$. Since f is non-decreasing, we have $f(x_1) \geq f(p) = p$. By (1.4), we get

$$z_1 = (1 - \gamma_1)x_1 + \gamma_1 f(x_1) \geq (1 - \gamma_1)p + (\gamma_1)p = p.$$

Thus $f(z_1) \geq f(p) = p$. From (1.4), we have

$$y_1 = (1 - \beta_1)z_1 + \beta_1 f(z_1) \geq (1 - \beta_1)p + (\beta_1)p = p.$$

Thus $f(y_1) \geq f(p) = p$. Again (1.4), implies that

$$x_2 = (1 - \alpha_1)f(z_1) + \alpha_1 f(y_1) \geq (1 - \alpha_1)p + (\alpha_1)p = p.$$

Assume that $x_k \geq p$ for $k > 2$. Thus $f(x_k) \geq f(p) = p$.

By (1.4), we have

$$z_k = (1 - \gamma_k)x_k + \gamma_k f(x_k) \geq (1 - \gamma_k)p + (\gamma_k)p = p.$$

Thus $f(z_k) \geq f(p) = p$. This implies

$$y_k = (1 - \beta_k)z_k + \beta_k f(z_k) \geq (1 - \beta_k)p + \beta_k p = p.$$

Hence $f(y_k) \geq f(p) = p$. It follows that

$$x_{k+1} = (1 - \alpha_k)f(z_k) + \alpha_k f(y_k) \geq (1 - \alpha_k)p + \alpha_k p = p.$$

By induction, we can conclude that $x_n \geq p$ for all $n \geq 1$.

(ii) By using the same argument as in (i), we can show that $x_n \leq p$ for all $n \geq 1$.

Lemma 3.4. Let E be a closed interval on the real line and $f : E \to E$ be a continuous and non-decreasing function. For $x_1 \in E$, let $\{\alpha_n\}_{n=1}^{\infty}$, $\{\beta_n\}_{n=1}^{\infty}$ and $\{\gamma_n\}_{n=1}^{\infty}$ be sequences in $[0,1]$. For $x_1 = q_1 \in E$, let $\{q_n\}_{n=1}^{\infty}$ and $\{x_n\}_{n=1}^{\infty}$ be sequences defined by (1.3) and (1.4) respectively. Then we have the following:

(i) If $f(q_1) < q_1$, then $x_n \leq q_n$ for all $n \geq 1$.

(ii) If $f(q_1) > q_1$, then $x_n \geq q_n$ for all $n \geq 1$.

Proof. (i) Let $f(q_1) < q_1$. Since $x_1 = q_1$, we get $f(x_1) < x_1$. First, we show that $x_n \leq q_n$ for all $n \geq 1$.

From (1.4), we get $f(x_1) \leq z_1 \leq x_1$. Since f is non-decreasing, we have $f(z_1) \leq f(x_1) \leq z_1 \leq x_1$.

By (1.4), we have $f(y_1) \leq y_1 \leq z_1$. Since f is non-decreasing, we obtain

$$f(y_1) \leq f(z_1) \leq f(x_1) \leq z_1 \leq x_1.$$
From (1.3) and (1.4), we get $z_1 - q_1 = (1 - \gamma_1)x_1 + \gamma_1 f(x_1) - q_1 = \gamma_1(f(x_1) - x_1) \leq 0$. Thus $z_1 \leq q_1$. Since f is non-decreasing, we have $f(z_1) \leq f(q_1)$.

By (1.3) and (1.4), we get $y_1 = (1 - \beta_1)(z_1 - q_1) + \beta_1(f(z_1) - f(q_1)) \leq 0$.

Thus $y_1 \leq r_1$. Since f is non-decreasing, we have $f(y_1) \leq f(r_1)$. By (1.3) and (1.4), it follows that

$$x_2 - q_2 = (1 - \alpha_1)[f(z_1) - f(q_1)] + \alpha_1[f(y_1) - f(r_1)] \leq 0.$$

Thus $x_2 \leq q_2$. Assume that $x_k \leq q_k$. Thus $f(x_k) \leq f(q_k)$. By Lemma 2.1 $f(q_k) \leq q_k$ and by (1.4), Lemma 3.1 $f(x_k) \leq x_k$. This implies $f(x_k) \leq z_k \leq x_k \leq q_k$. Since f is non-decreasing, we have $f(z_k) \leq f(q_k)$. By (1.3) and (1.4), it follows that

$$y_k - r_k = (1 - \beta_k)(z_k - q_k) + \beta_k(f(z_k) - f(q_k)) \leq 0.$$

Thus $y_k \leq r_k$. Since f is non-decreasing, we have $f(y_k) \leq f(r_k)$ it follows that

$$x_{k+1} - q_{k+1} = (1 - \alpha_k)[f(z_k) - f(q_k)] + \alpha_k[f(y_k) - f(r_k)] \leq 0.$$

By Mathematical induction, we obtain $x_n \leq q_n$ for all $n \geq 1$.

(ii) By using the same argument as in (i), we obtain the desired result.

The next two propositions show that convergence of P-iteration depends on how far the initial point from the fixed point set.

Proposition 3.5. Let E be a closed interval on the real line and $f : E \to E$ be a continuous and non-decreasing function such that $F(f)$ is nonempty and bounded with $x_1 < \inf\{p \in E : p = f(p)\}$. Let $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ be sequences in $[0, 1]$. If $f(x_1) < x_1$, then the sequence $\{x_n\}$ defined by P-iteration does not converge to a fixed point of f.

Proof. By Lemma 3.1(i), we have that $\{x_n\}$ is non-increasing. Since the initial point $x_1 < \inf\{p \in E : p = f(p)\}$, it follows that $\{x_n\}$ does not converge to a fixed point of f.

Proposition 3.6. Let E be a closed interval on the real line and $f : E \to E$ be a continuous and non-decreasing function such that $F(f)$ is nonempty and bounded with $x_1 > \sup\{p \in E : p = f(p)\}$. Let $\{\alpha_n\}$, $\{\beta_n\}$ and $\{\gamma_n\}$ be sequences in $[0, 1]$. If $f(x_1) > x_1$, then the sequence $\{x_n\}$ defined by P-iteration does not converge to a fixed point of f.

Proof. By Lemma 3.1(ii), we have that $\{x_n\}$ is non-decreasing. Since the initial point $x_1 > \sup\{p \in E : p = f(p)\}$, it follows that $\{x_n\}$ does not converge to a fixed point of f.

Theorem 3.7. Let E be a closed interval on the real line and $f : E \to E$ be a continuous and non-decreasing function such that $F(f)$ is nonempty and bounded. For $q_1 = x_1 \in E$, let $\{q_n\}$ and $\{x_n\}$ be the sequences defined by (1.3) and (1.4), respectively. If the S-iteration $\{q_n\}$ converges to $p \in F(f)$, then the P-iteration $\{x_n\}$ converges to p. Moreover, the P-iteration converges faster than the S-iteration.

Proof. Suppose the S-iteration $\{q_n\}$ converges to $p \in F(f)$. Put $l = \inf\{x \in E : x = f(x)\}$ and $u = \sup\{x \in E : x = f(x)\}$. We devide our proof into the following three cases:
Case 1: \(q_1 = x_1 > u \). By Proposition 2.2 and Proposition 3.6, we get \(f(q_1) < q_1 \) and \(f(x_1) < x_1 \). By Lemma 3.4 (i), we have \(x_n \leq q_n \) for all \(n \geq 1 \). By continuity of \(f \), we have \(f(u) = u \), so \(u = f(u) \leq f(x_1) < x_1 \). This implies by (1.4) that \(f(x_1) \leq z_1 \leq x_1 \), so \(u \leq z_1 \leq x_1 \). Since \(f \) is non-decreasing, we have \(u = f(u) \leq f(z_1) \leq f(x_1) \leq z_1 \leq x_1 \). It follows by (1.4), that \(y_1 = (1-\beta_1)z_1 + \beta_1 f(z_1) \leq z_1 \). Since \(f \) is non-decreasing, we have \(u \leq f(y_1) \leq f(z_1) \leq f(x_1) \leq z_1 \leq x_1 \) and \(u \leq f(y_1) \leq f(z_1) \). By mathematical induction, we can show that \(u \leq x_n \) for all \(n \geq 1 \). Hence, we have \(p \leq x_n \leq q_n \) for all \(n \geq 1 \), which implies \(|x_n - p| \leq |q_n - p| \) for all \(n \geq 1 \). Thus \(x_n \to p \) and the P-iteration converges to \(p \) faster than the S-iteration.

Case 2: \(q_1 = x_1 < l \). By Proposition 2.3 and Proposition 3.5, we get \(f(q_1) > q_1 \) and \(f(x_1) > x_1 \). By Lemma 3.4 (ii), we have \(x_n \geq q_n \) for all \(n \geq 1 \). We note that \(x_1 < l \), by (1.4) and mathematical induction, we can show that \(x_n < l \) for all \(n \geq 1 \). So \(q_n \leq x_n \leq p \) for all \(n \geq 1 \). Hence \(|x_n - p| \leq |q_n - p| \). It follows that \(x_n \to p \) and the P-iteration converges to \(p \) faster than the S-iteration.

Case 3: \(l < q_1 = x_1 < u \). Suppose that \(f(x_1) \neq x_1 \). If \(f(x_1) < x_1 \), by Lemma 2.1 (i), we have that \(\{q_n\} \) is non-increasing. It follows that \(p \leq q_n \) for all \(n \geq 1 \). By Lemma 3.3 (i) and Lemma 3.4 (i), we get \(p \leq x_n \leq q_n \) for all \(n \geq 1 \). This implies \(|x_n - p| \leq |q_n - p| \). It follows that \(x_n \to p \) and the P-iteration converges to \(p \) faster than the S-iteration.

If \(f(x_1) > x_1 \), by Lemma 2.1 (ii), we have that \(\{q_n\} \) is non-decreasing. This implies \(q_n \leq p \) for all \(n \geq 1 \). By Lemma 3.3 (ii) and Lemma 3.4 (ii), we get \(q_n \leq x_n \leq p \) for all \(n \geq 1 \). It follows that \(|x_n - p| \leq |q_n - p| \) for all \(n \geq 1 \). Hence \(x_n \to p \) and the P-iteration converges to \(p \) faster than the S-iteration.

Example 3.8. Let \(f : [0, \infty) \to [0, \infty) \) be defined by \(f(x) = \frac{x^2 + 3}{4} \). Then \(f \) is a continuous and non-decreasing function. The comparisons of the convergence of the Ishikawa iteration, S-iteration and the P-iteration to the exact fixed point \(p = 1 \) are given in Table 1, with the initial point \(x_1 = q_1 = s_1 = 2 \) and \(\alpha_n = \frac{1}{n} \), \(\beta_n = \gamma_n = \frac{1}{4n} \).

| \(n \) | \(n \) | \(q_n \) | \(x_n \) | \(|f(x_n) - x_n| \) |
|---|---|---|---|---|
| 3 | 1.540872070 | 1.228210401 | 1.150245305 | 0.129225591 |
| ... | ... | ... | ... | ... |
| 26 | 1.364330605 | 1.000000032 | 1.000000002 | 2.56567E-09 |
| 27 | 1.361571178 | 1.000000016 | 1.000000001 | 1.23348E-09 |
| 28 | 1.358927101 | 1.000000008 | 1.000000001 | 5.93889E-09 |

Table 1

Comparison of rate of convergence of the Ishikawa iteration, S-iteration and P-iteration for the given function in Example 3.8. From Table 1, we see that the P-iteration converges to \(p = 1 \) faster than the Ishikawa and S-iterations.
Example 3.9. Let \(f : [0, 5] \to [0, 5] \) be defined by \(f(x) = \sqrt{x^2 + 4} \). Then \(f \) is a continuous and non-decreasing function. The comparisons of the convergence of the Ishikawa iteration, S-iteration and the P-iteration to the exact fixed point \(p = 2 \) are given in Table 2, with the initial point \(x_1 = q_1 = s_1 = 3 \) and \(\alpha_n = \beta_n = \gamma_n = \frac{1}{n} \).

| \(n \) | \(s_n \) | \(q_n \) | \(x_n \) | \(|f(x_n) - x_n| \) |
|---|---|---|---|---|
| 3 | 2.055372105 | 2.010415225 | 2.001802129 | 0.005000393 |
| ... | ... | ... | ... | ... |
| 12 | 2.021489268 | 2.0000000462 | 2.000000033 | 6.9311E-08 |
| 13 | 2.020359903 | 2.0000000153 | 2.000000010 | 2.17191E-09 |
| 14 | 2.019368059 | 2.0000000051 | 2.000000003 | 6.84134E-09 |
| 15 | 2.018488772 | 2.0000000017 | 2.000000001 | 2.16447E-09 |

Table 2

Comparison of rate of convergence of the Ishikawa iteration, S-iteration and P-iteration for the given function in Example 3.9. From Table 2, we see that the P-iteration converges to \(p = 2 \) faster than the Ishikawa and S-iterations.

Acknowledgements: The author would like to thank Rajamangala University of Technology Lanna for the financial for this paper and the referees for comments and suggestions on the manuscript.

References

(Received 15 January 2015)
(Accepted 16 May 2015)