On the Least (Ordered) Semilattice Congruence in Ordered Γ-Semigroups

M. Siripitukdet and A. Iampan

Abstract : In this paper, we firstly characterize the relationship between the (ordered) filters, (ordered) s-prime ideals and (ordered) semilattice congruences in ordered Γ-semigroups. Finally, we give some characterizations of semilattice congruences and ordered semilattice congruences on ordered Γ-semigroups and prove that
1. \mathcal{N} is the least semilattice congruence,
2. \mathcal{N} is the least ordered semilattice congruence,
3. \mathcal{N} is not the least semilattice congruence in general.

Keywords : Ordered Γ-semigroup; (ordered) filter; (ordered) s-prime ideal; Least (ordered) semilattice congruence.

2000 Mathematics Subject Classification : 20M99, 06F99, 06B10.

1 Preliminaries

In 1998, Gao [8] gives some characterizations of semilattice congruences and ordered semilattice congruences on ordered semigroups. Now we also characterize the semilattice congruences and ordered semilattice congruences on ordered Γ-semigroups and give some characterizations of semilattice congruences and ordered semilattice congruences on ordered Γ-semigroups analogous to the characterizations of semilattice congruences and ordered semilattice congruences on ordered semigroups.

Let M and Γ be any two nonempty sets. M is called a Γ-semigroup [3,4] if there exists a mapping $M \times \Gamma \times M \longrightarrow M$, written as $((a, \gamma, b) \mapsto a\gamma b$, satisfying the following identity $(aab)\beta c = a(a(b)c)$ for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. A Γ-semigroup M is called a commutative Γ-semigroup if $a\gamma b = b\gamma a$ for all $a, b \in M$ and $\gamma \in \Gamma$. A nonempty subset K of a Γ-semigroup M is called a sub-Γ-semigroup of M if $a\gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$.

For examples of Γ-semigroups, see [1,3,4].

A partially ordered Γ-semigroup M is called an ordered Γ-semigroup (po-Γ-semigroup) if for any $a, b, c \in M$ and $\gamma \in \Gamma$, $a \leq b$ implies $a\gamma c \leq b\gamma c$ and $c\gamma a \leq c\gamma b$.
Example 1. For \(a, b \in [0,1] \), let \(M = [0,a] \) and \(\Gamma = [0,b] \). Then \(M \) is an ordered \(\Gamma \)-semigroup under usual multiplication and usual partial order relation.

Example 2. Fix \(m \in \mathbb{Z} \), let \(M \) be the set of all integers of the form \(mn + 1 \) and \(\Gamma \) denote the set of all integers of the form \(mn + m - 1 \) where \(n \) is an integer. Then \(M \) is an ordered \(\Gamma \)-semigroup under usual addition and usual partial order relation.

Throughout this paper, \(M \) stands for an ordered \(\Gamma \)-semigroup. For nonempty subsets \(A \) and \(B \) of \(M \) and a nonempty subset \(\Gamma' \) of \(\Gamma \), let \(A\Gamma'B := \{a\gamma b : a \in A, b \in B \text{ and } \gamma \in \Gamma' \} \). If \(A = \{a\} \), then we also write \(\{a\}\Gamma'B \) as \(a\Gamma'B \), and similarly if \(B = \{b\} \) or \(\Gamma' = \{\gamma \} \). A nonempty subset \(A \) of \(M \) is called a left (right) ideal of \(M \) \([7]\) if \(M\Gamma A \subseteq A \) (\(A\Gamma M \subseteq A \)). \(A \) is called an ideal of \(M \) if it is both a left ideal and a right ideal of \(M \). A left ideal (right ideal, ideal) \(A \) of \(M \) is called an ordered left ideal (right ideal, ideal) of \(M \) if for any \(b \in M \) and \(a \in A, b \leq a \) implies \(b \in A \).

The following definitions in this paper are introduced analogous some definitions in \([5, 7, 8]\).

A left ideal (right ideal, ideal) \(A \) of \(M \) is called an \(s \)-prime left ideal (right ideal, ideal) of \(M \) if for any \(a, b \in M \) and \(\gamma \in \Gamma, a\gamma b \in A \) implies \(a \in A \) or \(b \in A \). Equivalently, for any subsets \(B \) and \(C \) of \(M \) and \(\gamma \in \Gamma, B\gamma C \subseteq A \) implies \(B \subseteq A \) or \(C \subseteq A \). An \(s \)-prime left ideal (right ideal, ideal) \(A \) of \(M \) is called an ordered \(s \)-prime left ideal (right ideal, ideal) of \(M \) if \(A \) is an ordered left ideal (right ideal, ideal) of \(M \). Let

\[
SP(M) := \{A : A \text{ is an } s\text{-prime ideal of } M\},
\]

\[
OSP(M) := \{A : A \text{ is an ordered } s\text{-prime ideal of } M\}.
\]

Then \(\emptyset \neq OSP(M) \subseteq SP(M) \).

For a subset \(H \) of \(M \) and \(a \in M \), denote \((H) := \{t \in M : t \leq h \text{ for some } h \in H\}\), \([H] := \{t \in M : h \leq t \text{ for some } h \in H\}\) and \(a \cup H := \{a\} \cup H \). For \(H = \{a\} \), we also write \((\{a\})\) as \((a) \). Clearly, \(H \subseteq [H] \subseteq (H) \). For any subsets \(A \) and \(B \) of \(M \) with \(A \subseteq B \), we have \((A) \subseteq (B) \). A sub-\(\Gamma \)-semigroup \(F \) of \(M \) is called a left (right) filter of \(M \) if for any \(a, b \in M \) and \(\gamma \in \Gamma, a\gamma b \in F \) implies \(b \in F \) (\(a \in F \)). \(F \) is called a filter of \(M \) if it is both a left filter and a right filter of \(M \). A left filter (right filter, filter) \(F \) of \(M \) is called an ordered left filter (right filter, filter) of \(M \) if for any \(b \in M \) and \(a \in F, a \leq b \) implies \(b \in F \). The intersection of all filters (ordered filters) of \(M \) containing a nonempty subset \(A \) of \(M \) is the filter (ordered filter) of \(M \) generated by \(A \). For \(A = \{x\} \), let

\[
n(x) \text{ denote the filter of } M \text{ generated by } \{x\},
\]

\[
N(x) \text{ denote the ordered filter of } M \text{ generated by } \{x\}.
\]

An equivalence relation \(\sigma \) on \(M \) is called a congruence \([2]\) if for any \(a, b, c \in M \) and \(\gamma \in \Gamma, (a, b) \in \sigma \) implies \((a\gamma c, b\gamma c) \in \sigma \) and \((c\gamma a, c\gamma b) \in \sigma \). A congruence \(\sigma \)
on M is called a semilattice congruence [6] if for all $a, b \in M$ and $\gamma \in \Gamma$, $(a\gamma a, a) \in \sigma$ and $(a\gamma b, b\gamma a) \in \sigma$. A semilattice congruence σ on M is called an ordered semilattice congruence if for any $a, b \in M$ and $\gamma \in \Gamma$, $a \leq b$ implies $(a, a\gamma b) \in \sigma$.

Now, let

$$SC(M) := \{ \sigma : \sigma \text{ is a semilattice congruence on } M \},$$

$$OSC(M) := \{ \sigma : \sigma \text{ is an ordered semilattice congruence on } M \}.$$

Then $\emptyset \neq OSC(M) \subseteq SC(M)$.

For a nonempty subset A of M, define equivalence relations on M as follows:

$$\sigma_A := \{(x, y) \in M \times M : x, y \in A \text{ or } x, y \notin A\},$$

$$n := \{(x, y) \in M \times M : n(x) = n(y)\},$$

$$N := \{(x, y) \in M \times M : N(x) = N(y)\}.$$

We note here that $\sigma_A = \sigma_M \setminus A$.

For any congruence σ on M and $x \in M$, let

$$f(x)_\sigma \text{ denote the filter of } M \text{ generated by } σ-class } (x)_\sigma,$$

$$t \text{ denote the filter of } M \text{ generated by } \bigcup_{y \in (x)_\sigma} n(y),$$

$$F(x)_\sigma \text{ denote the ordered filter of } M \text{ generated by } σ-class } (x)_\sigma,$$

$$T \text{ denote the ordered filter of } M \text{ generated by } \bigcup_{y \in (x)_\sigma} N(y).$$

The following results are also necessary for our considerations.

Theorem 1.1. Let F be a nonempty subset of M. Then F is a left filter of M if and only if $M \setminus F = \emptyset$ or $M \setminus F$ is an s-prime left ideal of M.

Proof. Assume that F is a left filter of M and $M \setminus F \neq \emptyset$. First to show that $M \setminus F$ is a left ideal of M, let $x, y \in M \setminus F$ and $\gamma \in \Gamma$. Since F is a left filter of M and $y \notin F$, $x\gamma y \in M \setminus F$. Thus $M \setminus F$ is a left ideal of M. Next, let $x, y \in M$ and $\gamma \in \Gamma$ be such that $x\gamma y \in M \setminus F$. Since F is a sub-Γ-semigroup of M, $x \in M \setminus F$ or $y \in M \setminus F$. Thus $M \setminus F$ is an s-prime left ideal of M.

Conversely, if $M \setminus F = \emptyset$, then $F = M$. Hence F is a left filter of M. Assume that $M \setminus F$ is an s-prime left ideal of M. First to show that F is a sub-Γ-semigroup of M, let $x, y \in F$ and $\gamma \in \Gamma$. Then $x\gamma y \in F$ because $M \setminus F$ is an s-prime left ideal of M. Thus F is a sub-Γ-semigroup of M. Next, let $x, y \in M$ and $\gamma \in \Gamma$ be such that $x\gamma y \in F$. Then $y \in F$ because $M \setminus F$ is a left ideal of M, so F is a left filter of M. \hfill \square

A similar result holds if we replace the word “left” by “right”. Then we get the following.
Corollary 1.2. Let F be a nonempty subset of M. Then F is a filter of M if and only if $M \setminus F = \emptyset$ or $M \setminus F$ is an s-prime ideal of M.

Theorem 1.3. Let F be a nonempty subset of M. Then F is an ordered left filter of M if and only if $M \setminus F = \emptyset$ or $M \setminus F$ is an ordered s-prime left ideal of M.

Proof. Assume that F is an ordered left filter of M and $M \setminus F \neq \emptyset$. By Theorem 1.1, $M \setminus F$ is an s-prime left ideal of M. Now, let $x \in M$ and $y \in M \setminus F$ be such that $x \leq y$. Then $x \in M \setminus F$ because F is an ordered left filter of M, so $M \setminus F$ is an ordered s-prime left ideal of M.

Conversely, if $M \setminus F = \emptyset$, then $F = M$. Hence F is an ordered left filter of M. Assume that $M \setminus F$ is an ordered s-prime left ideal of M. By Theorem 1.1, F is a left filter of M. Now, let $x \in M$ and $y \in F$ be such that $y \leq x$. Then $x \in F$ because $M \setminus F$ is an ordered left ideal of M, so F is an ordered left filter of M. □

Corollary 1.4. Let F be a nonempty subset of M. Then F is an ordered filter of M if and only if $M \setminus F = \emptyset$ or $M \setminus F$ is an ordered s-prime ideal of M.

2 Semilattice Congruences and Ordered Semilattice Congruences

In this section, we characterize the relationship between the semilattice congruences, filters, and s-prime ideals in ordered Γ-semigroups. Likewise, the relationship between the ordered semilattice congruences, ordered filters, and ordered s-prime ideals in ordered Γ-semigroups are characterized.

The following lemmas are necessary for the main results and the first two lemmas are easy to verify.

Lemma 2.1. An equivalence relation σ on M is a congruence if and only if for any $a, b, c, d \in M$ and $\gamma \in \Gamma$, $(a, b) \in \sigma$ and $(c, d) \in \sigma$ imply $(a \gamma c, b \gamma d) \in \sigma$.

Lemma 2.2. If $\sigma \in \text{SC}(M)$, then the following statements hold.

(a) For each $x \in M$, the σ-class $(x)_\sigma$ is a sub-Γ-semigroup of M.

(b) The set $M/\sigma := \{(x)_\sigma : x \in M\}$ is a commutative Γ-semigroup under the multiplication defined by $(x)_\sigma \gamma (y)_\sigma = (x \gamma y)_\sigma$ for all $(x)_\sigma, (y)_\sigma \in M/\sigma$ and $\gamma \in \Gamma$.

Lemma 2.3. Let A be a subset of M and $\sigma_A \in \text{SC}(M)$. If $x \in M \setminus A$ and $a \in A$ with $x \mu a \notin A$ (resp. $a \mu x \notin A$) for some $\mu \in \Gamma$, then $x \gamma a \notin A$ (resp. $a \gamma x \notin A$) for all $\gamma \in \Gamma$.

Proof. Assume that $x \in M \setminus A$, $a \in A$ and $x \mu a \notin A$ for some $\mu \in \Gamma$. Then $(x, x \mu a) \in \sigma_A$, so $(x)_\sigma = (x \mu a)_{\sigma_A}$. Suppose that there exists $\gamma \in \Gamma$ such that
$x\gamma a \in A$. Then $(a, x\gamma a) \in \sigma_A$. Thus $(a)_{\sigma_A} = (x\gamma a)_{\sigma_A}$. By Lemma 2.2 (b),
$(x)_{\sigma_A} = (x\mu a)_{\sigma_A} = (x\mu a\gamma a)_{\sigma_A} = (x\gamma a)_{\sigma_A} = (a)_{\sigma_A}$. Thus $(x, a) \in \sigma_A$, so $a \notin A$. This is a contradiction. Therefore $x\gamma a \notin A$ for all $\gamma \in \Gamma$. □

As a consequence of this result, we obtain

Lemma 2.4. Let A be a nonempty subset of M. Then $\sigma_A \in SC(M)$ if and only if one of A or $M \setminus A$ is an s-prime ideal of M.

Proof. Assume that $\sigma_A \in SC(M)$. If $A = M$, then $A \in SP(M)$. Suppose that $A \subset M$. Then $M \setminus A \neq \emptyset$. First to show that A and $M \setminus A$ are sub-Γ-semigroups of M, let $x, y \in A$ and $\gamma \in \Gamma$. Then $(x\gamma y, y\gamma y) \in \sigma_A$ and $(y\gamma y, y) \in \sigma_A$ because $(x, y) \in \sigma_A$. Thus $(x, y) \in \sigma_A$. Hence $x\gamma y \in A$, so A is a sub-Γ-semigroup of M. The same argument applies to $M \setminus A$, we have $M \setminus A$ is a sub-Γ-semigroup of M.

Next, consider the following two cases:

Case 1: $M\Gamma A \subseteq A$. Then $\forall \gamma \in \Gamma$ such that $(x\gamma a, a\gamma x) \in \sigma_A$ and $x\gamma a \in A$ for all $\gamma \in \Gamma$. Hence A is an ideal of M.

Case 2: $M\Gamma A \nsubseteq A$. Then there exist $x \in M, a \in A, \mu \in \Gamma$ but $x\mu a \notin A$. Since A is a sub-Γ-semigroup of M, $x\gamma a \notin A \notin A$. By Lemma 2.3, $x\gamma a \notin A$. For all $\gamma \in \Gamma$. Thus $(x, x\gamma a) \in \sigma_A$ for all $\gamma \in \Gamma$. By Lemma 2.2 (b), $(x)_{\sigma_A} = (x\gamma a)_{\sigma_A} = (x)_{\sigma_A}(a)_{\sigma_A}$ for all $\gamma \in \Gamma$. Obviously, $M \setminus A = (x)_{\sigma_A}$ and $A = (a)_{\sigma_A}$, so $M \setminus A = (M \setminus A)\gamma A$ for all $\gamma \in \Gamma$. This implies that

$$M \setminus A = \bigcup_{\gamma \in \Gamma} (M \setminus A)\gamma A = (M \setminus A)\Gamma A.$$

Therefore

$$(M \setminus A)\Gamma M = (M \setminus A)\Gamma(A \cup (M \setminus A)) \subseteq ((M \setminus A)\Gamma A) \cup (M \setminus A) = M \setminus A,$$

so $M \setminus A$ is a right ideal of M. Since $(x\mu a, a\mu x) \in \sigma_A$ and $x\mu a \notin A, a\mu x \notin A$. By symmetry, $M \setminus A$ is a left ideal of M. This proves that $M \setminus A$ is an ideal of M.

Assume that A is an ideal of M. Let $x, y \in M$ and $\gamma \in \Gamma$ be such that $x\gamma y \in A$. If $x, y \notin A$, then $(x, y) \in \sigma_A$. Thus $(x\gamma x, x) \in \sigma_A$ and $(x\gamma x, x\gamma y) \in \sigma_A$, so $(x, x\gamma y) \in \sigma_A$. Thus $x\gamma y \notin A$, which is impossible. Hence $A \in SP(M)$.

Similarly, we can show that if $M \setminus A$ is an ideal of M, then $M \setminus A \in SP(M)$.

Conversely, assume that $A \in SP(M)$. Now, let $x, y \in M$ be such that $(x, y) \in \sigma_A, a \in M$ and $\gamma \in \Gamma$. Then we have the following two cases:

Case 1: $x, y \in A$. Then $c\gamma x, c\gamma y, c\gamma x, c\gamma c \in A$ because A is an ideal of M. Thus $(c\gamma x, c\gamma y) \in \sigma_A$ and $(c\gamma c, y\gamma c) \in \sigma_A$.

Case 2: $x, y \notin A$. Then $c\gamma x \in A$ if and only if $c\gamma y \in A$. Thus $(c\gamma x, c\gamma y) \in \sigma_A$.

By symmetry, $(c\gamma c, y\gamma c) \in \sigma_A$.

Hence σ_A is a congruence on M. Next, let $a, b \in M$ and $\gamma \in \Gamma$. Then $a \in A$ if and only if $a\gamma a \in A$, so $(a, a\gamma a) \in \sigma_A$. Similarly, we have $a\gamma b \in A$ if and only if $b\gamma a \in A$, so $(a, a\gamma b, b\gamma a) \in \sigma_A$. This proves that $\sigma_A \in SC(M)$. Similarly, we can show that if $M \setminus A \in SP(M)$, then $\sigma_A \in SC(M)$.

Hence the proof is completed. □
Lemma 2.5. If \(A \) is a nonempty subset of \(M \), then the following statements are equivalent.

(a) \(\sigma_A \in OSC(M) \).

(b) One of \(A \) or \(M \setminus A \) is an ordered \(s \)-prime ideal of \(M \).

Proof. Assume that \(\sigma_A \in OSC(M) \). By Lemma 2.4, \(A \in SP(M) \) or \(M \setminus A \in SP(M) \). Assume that \(A \in SP(M) \). Now, let \(x \in M \) and \(a \in A \) be such that \(x \leq a \) and \(\gamma \in \Gamma \). Then \((x, x \gamma a) \in \sigma_A \), so \(x \in A \) because \(x \gamma a \in A \). Hence \(A \in OSP(M) \).

Similarly, we can show that if \(M \setminus A \in SP(M) \), then \(M \setminus A \in OSP(M) \).

Conversely, assume that \(A \in OSP(M) \). Then \(\sigma_A \in SC(M) \) by Lemma 2.4. Now, let \(a, b \in M \) be such that \(a \leq b \) and \(\gamma \in \Gamma \). If \(a \in A \), then \(a \gamma b \in A \). If \(a \notin A \), then \(b \notin A \) and so \(a \gamma b \notin A \). Hence \((a, a \gamma b) \in \sigma_A \), so \(\sigma_A \in OSC(M) \). Similarly, we can show that if \(M \setminus A \in OSP(M) \), then \(\sigma_A \in OSC(M) \).

Hence the proof is completed. \(\square \)

Lemma 2.6. If \(x \in M \) and \(\sigma \in SC(M) \), then the following statements hold.

(a) \(f(x)_\sigma = \{ a \in M : a \in (x)_\sigma \text{ or } u \gamma a \in (x)_\sigma \text{ for some } u \in f(x)_\sigma \text{ and } \gamma \in \Gamma \} \).

(b) \(f(x)_\sigma = t \).

(c) If \(b \in f(x)_\sigma \), then \(f(b)_\sigma \subseteq f(x)_\sigma \).

(d) \(\sigma = \{(x, y) \in M \times M : f(x)_\sigma = f(y)_\sigma \} \).

Proof. (a) Let

\[
N := \{ a \in M : a \in (x)_\sigma \text{ or } u \gamma a \in (x)_\sigma \text{ for some } u \in f(x)_\sigma \text{ and } \gamma \in \Gamma \}.
\]

It is clear that \((x)_\sigma \subseteq N \subseteq f(x)_\sigma \). Conversely, to show that \(N \) is a filter of \(M \), let \(a, b \in N \) and \(\gamma \in \Gamma \). If \(u_1 \gamma_1 a, u_2 \gamma_2 b \in (x)_\sigma \) for some \(u_1, u_2 \in f(x)_\sigma \) and \(\gamma_1, \gamma_2 \in \Gamma \), then \(u_1 \gamma_1 a \gamma u_2 \gamma_2 b \in (x)_\sigma \) by Lemma 2.2 (a). It follows from Lemma 2.2 (b) that

\[
(x)_\sigma = (u_1 \gamma_1 a \gamma u_2 \gamma_2 b)_\sigma = (u_1 \gamma_1 a \gamma b \gamma_2 u_2)_\sigma = (u_1 \gamma_1 u_2 \gamma a \gamma b)_\sigma.
\]

Thus \(a \gamma b \in N \) because \(u_1 \gamma_1 u_2 \in f(x)_\sigma \). Similarly, it is easy to verify in the remain cases that \(a \gamma b \in N \). Hence \(N \) is a sub-\(\Gamma \)-semigroup of \(M \). We note here that for any \(a, b \in M \) and \(\gamma \in \Gamma \), \(a \gamma b \in N \) implies \(b \gamma a \in N \). Next, let \(a, b \in M \) and \(\gamma \in \Gamma \) be such that \(a \gamma b \in N \). Since \(N \subseteq f(x)_\sigma \), we have \(a, b \in f(x)_\sigma \). Since \(a \gamma b \in N \), \(a \gamma b \in (x)_\sigma \) or \(u \gamma a \gamma b \in (x)_\sigma \) for some \(u \in f(x)_\sigma \) and \(\gamma \in \Gamma \). Thus \(b \in N \). Since \(b \gamma a \in N \), \(a \in N \). Hence \(N \) is a filter of \(M \), so \(f(x)_\sigma \subseteq N \). Therefore \(N = f(x)_\sigma \).

(b) From the fact that \((x)_\sigma \subseteq \bigcup_{y \in (x)_\sigma} n(y), \) we get \(f(x)_\sigma \subseteq t \). On the other hand, we have \(n(y) \subseteq f(x)_\sigma \) for all \(y \in (x)_\sigma \). Thus \(\bigcup_{y \in (x)_\sigma} n(y) \subseteq f(x)_\sigma \), so \(t \subseteq f(x)_\sigma \). Therefore \(f(x)_\sigma = t \).
(c) Let \(b \in f(x)_\sigma \). By (a), we have \(b \in (x)_\sigma \) or \(uab \in (x)_\sigma \) for some \(u \in f(x)_\sigma \) and \(\alpha \in \Gamma \). Thus \((x)_\sigma = (b)_\sigma \) or \((x)_{\sigma} = (uab)_\sigma \) which implies that \((b)_\sigma \subseteq f(x)_\sigma \). Therefore \(f(b)_\sigma \subseteq f(x)_\sigma \).

(d) Let \(\sigma \) is a congruence on \(M \).

\[\tau := \{(x, y) \in M \times M : f(x)_\sigma = f(y)_\sigma \}. \]

It is clear that \(\sigma \subseteq \tau \). Conversely, let \(x, y \in M \) be such that \((x, y) \in \tau \). Then \(f(x)_\sigma = f(y)_\sigma \), so \(x \in f(y)_\sigma \) and \(y \in f(x)_\sigma \). By (a), if \(x \in (y)_\sigma \) or \(y \in (x)_\sigma \), then \((x)_\sigma = (y)_\sigma \). Therefore \((x)_\sigma = (y)_\sigma \). Let \(u_1 \gamma_1 x \in (y)_\sigma \) and \(u_2 \gamma_2 y \in (x)_\sigma \) for some \(u_1, u_2 \in f(x)_\sigma \). Thus \(u_1 \gamma_1 x = u_2 \gamma_2 y \). Hence \((x, y) \in \tau \), so \(\sigma = \tau \).

Immediately from Lemma 2.6, we have

Corollary 2.7. If \(x \in M \) and \(\sigma \in SC(M) \), then \(f(x)_\sigma = \{a \in M : a \in (x)_\sigma \) or \(u \gamma a \in (x)_\sigma \) or \(u \mu \gamma v \in (x)_\sigma \) for some \(u, v \in f(x)_\sigma \) and \(\gamma, \mu \in \Gamma \} \).

Corollary 2.8. If \(x \in M \), then the following statements hold.

(a) \(n \in SC(M) \).

(b) \(f(x)_n = n(x) \).

(c) \(n(x) = \{a \in M : a \in (x)_n \) or \(u \gamma a \in (x)_n \) for some \(u \in n(x) \) and \(\gamma \in \Gamma \} \).

Proof. (a) Let \(a, b \in M \) be such that \((a, b) \in n, c \in M \) and \(\gamma \in \Gamma \). Then \(n(a) = n(b) \). Since \(\beta \gamma c \in n(b \gamma c) \), we have \(b, c \in n(b \gamma c) \). Thus \(n(a) = n(b) \subseteq n(b \gamma c) \), so \(a, c \in n(b \gamma c) \). Hence \(a \gamma c \in n(b \gamma c) \), so \(n(a \gamma c) \subseteq n(b \gamma c) \). Similarly, \(n(b \gamma c) \subseteq n(a \gamma c) \).

Therefore \(n(a \gamma c) = n(b \gamma c) \), so \((a \gamma c, b \gamma c) \in n \). Similarly, \((c \gamma a, c \gamma b) \in n \). This proves that \(n \) is a congruence on \(M \). Next, let \(a, b, c \in \Gamma \) and \(\gamma \in \Gamma \). Then \(a \in n(a \gamma a) \) because \(a \gamma a \in n(a \gamma a) \), so \(n(a) \subseteq n(a \gamma a) \). Since \(a \in n(a) \), \(a \gamma a \in n(a) \). Hence \(n(a \gamma a) \subseteq n(a) \), so \(n(a \gamma a) = n(a) \). Therefore \((a \gamma a, a) \in n \). Similarly, \(n(a \gamma b) \subseteq n(b \gamma c) \).

(b) By (a) and Lemma 2.6 (b), \(f(x)_n = t \) where \(t \) is the filter of \(M \) generated by \(\bigcup_{y \in (x)_n} n(y) \). We note here that

\[\bigcup_{y \in (x)_n} n(y) = n(x). \]

Hence \(t = n(x) \), so \(f(x)_n = n(x) \).

(c) By (a) and Lemma 2.6 (a),

\[n(x) = f(x)_n = \{a \in M : a \in (x)_n \) or \(u \gamma a \in (x)_n \) for some \(u \in f(x)_n \) and \(\gamma \in \Gamma \} = \{a \in M : a \in (x)_n \) or \(u \gamma a \in (x)_n \) for some \(u \in n(x) \) and \(\gamma \in \Gamma \}. \]
Hence the proof is completed.

\[\text{Lemma 2.9. If } x \in M \text{ and } \sigma \in \text{OSC}(M), \text{ then the following statements hold.}\]

(a) \(F(x)_\sigma = \{ a \in M : a \in [(x)_\sigma] \text{ or } u \gamma a \in [(x)_\sigma] \text{ for some } u \in F(x)_\sigma \text{ and } \gamma \in \Gamma \}.\]

(b) \(F(x)_\sigma = T.\)

(c) If \(b \in F(x)_\sigma, \text{ then } F(b)_\sigma \subseteq F(x)_\sigma.\)

(d) \(\sigma = \{(x, y) \in M \times M : F(x)_\sigma = F(y)_\sigma \}.\)

Proof. (a) Let

\[N := \{ a \in M : u \gamma a \in [(x)_\sigma] \text{ or } a \in [(x)_\sigma] \text{ for some } u \in F(x)_\sigma \text{ and } \gamma \in \Gamma \}.\]

It is clear that \((x)_\sigma \subseteq N \subseteq F(x)_\sigma.\) Conversely, to show that \(N\) is an ordered filter of \(M,\) let \(a, b \in N\) and \(\gamma \in \Gamma.\) If \(u_1 \gamma_1 a, u_2 \gamma_2 b \in [(x)_\sigma]\) for some \(u_1, u_2 \in F(x)_\sigma\) and \(\gamma_1, \gamma_2 \in \Gamma,\) then \(y_1 \leq u_1 \gamma_1 a\) and \(y_2 \leq u_2 \gamma_2 b\) for some \(y_1, y_2 \in (x)_\sigma.\) Thus \(y_1 \gamma_2 \leq u_1 \gamma_1 a \gamma_2\) and \(y_1 \gamma_2 \leq y_2 \gamma_2 \in (x)_\sigma\) by Lemma 2.2 (a). Hence \((y_1 \gamma_2, y_1 \gamma_2 \gamma_1 \gamma_2 \gamma_2\) \(\in \sigma\) which implies that \((x, x \gamma u_1 \gamma_1 a \gamma_2 \gamma_2 b) \in \sigma.\) It follows from Lemma 2.2 (b) that

\[(x)_\sigma = (x \gamma u_1 \gamma_1 a \gamma_2 \gamma_2 b)_\sigma = (x \gamma u_1 \gamma_1 a \gamma_2 \gamma_2 a \gamma_2 b)_\sigma .\]

Thus \(a \gamma b \in N\) because \(x \gamma u_1 \gamma_1 u_2 \in F(x)_\sigma.\) Similarly, it is easy to verify in the remain cases that \(a \gamma b \in N.\) Hence \(N\) is a sub-\(\Gamma\)-semigroup of \(M.\) We note here that for any \(a, b \in M\) and \(\gamma \in \Gamma, a \gamma b \in N\) implies \(b \gamma a \in N.\) Let \(a, b \in M\) be such that \(a \gamma b \in N\) and \(\gamma \in \Gamma.\) Since \(N \subseteq F(x)_\sigma,\) we have \(a, b \in F(x)_\sigma.\) Since \(a \gamma b \in N,\)

\[a \gamma b \in [(x)_\sigma] \text{ or } u a a \gamma b \in [(x)_\sigma] \text{ for some } u \in F(x)_\sigma \text{ and } \alpha \in \Gamma.\]

Thus \(b \in N.\) Since \(b \gamma a \in N, a \in N.\) Hence \(N\) is a filter of \(M.\) Next, let \(b \in M\) and \(a \in N\) be such that \(a \leq b.\) Then \(a \in [x)_\sigma] \text{ or } u a a \in [(x)_\sigma] \text{ for some } u \in F(x)_\sigma \text{ and } \alpha \in \Gamma \text{ which implies that } b \in [(x)_\sigma] \text{ or } u a b \in [(x)_\sigma].\)

(b) It is similar to the proof of Lemma 2.6 (b).

(c) Let \(b \in F(x)_\sigma\) and \(\gamma \in \Gamma.\) By (a), we have \(b \in [(x)_\sigma] \text{ or } u a b \in [(x)_\sigma] \text{ for some } u \in F(x)_\sigma \text{ and } \alpha \in \Gamma.\) Thus \((x)_\sigma = (x \gamma b)_\sigma \text{ or } (x)_\sigma = (x \gamma u a b)_\sigma \text{ which implies that } (b)_\sigma \subseteq F(x)_\sigma.\) Therefore \(F(b)_\sigma \subseteq F(x)_\sigma.\)

(d) Let

\[\tau := \{(x, y) \in M \times M : F(x)_\sigma = F(y)_\sigma \}.\]

It is clear that \(\sigma \subseteq \tau.\) Conversely, let \(x, y \in M\) be such that \((x, y) \in \tau \text{ and } \gamma \in \Gamma.\) Then \(F(x)_\sigma = F(y)_\sigma, \text{ so } x \in F(y)_\sigma \text{ and } y \in F(x)_\sigma.\) By (a), it suffices to show that the following case is satisfied. If \(u_1 \gamma_1 x \in [(y)_\sigma] \text{ and } u_2 \gamma_2 y \in [(x)_\sigma]\) for some \(u_1, u_2 \in F(x)_\sigma, y \in F(y)_\sigma\) and \(\gamma_1, \gamma_2 \in \Gamma,\) then \((y, y \gamma u_1 \gamma_1 x) \in \sigma \text{ and } (x, x \gamma u_2 \gamma_2 y) \in \sigma.\) It follows from Lemma 2.2 (b) that
On the Least (Ordered) Semilattice Congruences in Ordered Γ-Semigroups

$$(u_2\gamma_2 y)\sigma = (u_2\gamma_2 yu_1\gamma_1 x)\sigma = (u_1\gamma_1 xu_2\gamma_2 y)\sigma = (u_1\gamma_1 x)\sigma.$$

Hence $(x)_\sigma = (xu_2\gamma_2 y)\sigma = (u_2\gamma_2 yx)\sigma = (u_1\gamma_1 xu_2\gamma_2 y)\sigma = (u_2\gamma_2 y)\sigma = (xu_2\gamma_2 y)\sigma = (y\gamma_1 xu_2\gamma_2 y)\sigma = (y)\sigma$, so $(x, y) \in \sigma$. Similarly, it is easy to verify in the remain cases that $(x, y) \in \sigma$. Therefore $\sigma = \tau$. □

Immediately from Lemma 2.8, we have

Corollary 2.10. If $x \in M$ and $\sigma \in \text{OSC}(M)$, then $F(x)_\sigma \subseteq N(x)$.

Proof. (a) By the similar way of proof of Corollary 2.8 (a), we have $N \in \text{SC}(M)$. Now, let $a, b \in M$ be such that $a \leq b$ and $\gamma, \mu \in \Gamma$. Then $a, b \in N(a\gamma b)$ because $a\gamma b \in N(a\gamma b)$, so $N(a) \subseteq N(a\gamma b)$. Since $a \in N(a), b \in N(a)$. Thus $a\gamma b \in N(a), N(a\gamma b) \subseteq N(a)$. Hence $N(a) = N(a\gamma b)$, so $a, a\gamma b \in N$. Therefore $N \in \text{OSC}(M)$.

(b) It is similar to the proof of Corollary 2.8 (b).

(c) It is similar to the proof of Corollary 2.8 (c).

Hence the proof is completed. □

3 Main Results

In last section, we characterize the least semilattice congruences and ordered semilattice congruences on ordered Γ-semigroups and show that N is not the least semilattice congruence on ordered Γ-semigroups in general.

Theorem 3.1.

(a) $N = \bigcap_{I \in \text{SP}(M)} \sigma_I$.

(b) $N = \bigcap_{I \in \text{OSP}(M)} \sigma_I$.

(b) $N \subseteq N$.

Proof. (a) Let
Hence the theorem is proved. □

Let \(x, y \in M \) be such that \((x, y) \in n\). Then \(n(x) = n(y) \). Suppose that there exists \(I \in SP(M) \) such that \((x, y) \notin \sigma_I\). By Corollary 1.2, \(M \setminus I \) is a filter of \(M \). Without loss of generality, we may assume that \(x \in I \) and \(y \in M \setminus I \). Then \(x \in n(x) = n(y) \subseteq M \setminus I \), which is impossible. Hence \((x, y) \in \sigma_I\) for all \(I \in SP(M) \), so \((x, y) \in \tau\). Conversely, let \(x, y \in M \) be such that \((x, y) \in \tau\). Then \((x, y) \in \sigma_I\) for all \(I \in SP(M) \). Suppose that \((x, y) \notin n\). Then \(n(x) \neq n(y) \). By Corollary 2.8 \((b) f(x)_n = n(x) \neq n(y) = f(y)_n \). Without loss of generality, we may assume that \(f(x)_n \not\subseteq f(y)_n \). By Lemma 2.6 \((c) x \notin f(y)_n \). Then \((x, y) \notin \sigma_{M \setminus f(y)_n}\). Since \(M \setminus f(y)_n \neq \emptyset \), it follows from Corollary 1.2 that \(M \setminus f(y)_n \in SP(M) \). This implies that \((x, y) \notin \sigma_{M \setminus f(y)_n}\), which is impossible. Hence \((x, y) \in n\), this proves that \(n = \bigcap \{ \sigma_I : I \in SP(M) \}\).

(b) It is similar to the proof of \((a)\).

(c) Since \(OSP(M) \subseteq SP(M) \), it follows from \((a)\) and \((b)\) that \(n \subseteq N\).

Hence the theorem is proved.

Theorem 3.2. If \(\sigma \in SC(M) \), then the following statements hold.

\[
(a) \quad \sigma = \bigcap_{x \in M} \sigma_{M \setminus f(x)_{\sigma}}.
\]

\[
(b) \quad n \subseteq \sigma, \text{i.e., } n \text{ is the least element of } SC(M).
\]

Proof. \((a)\) Let

\[
\tau := \bigcap_{x \in M} \sigma_{M \setminus f(x)_{\sigma}}.
\]

Let \(x, y \in M\) be such that \((x, y) \in \sigma\). Then \(f(x)_\sigma = f(y)_\sigma \) by Lemma 2.6 \((d)\). Suppose that \((x, y) \notin \sigma_{M \setminus f(a)_\sigma}\) for some \(a \in M \). Without loss of generality, we may assume that \(x \in M \setminus f(a)_\sigma \) and \(y \notin M \setminus f(a)_\sigma \). Then \(y \in f(a)_\sigma\), it follows from Lemma 2.6 \((c)\) that \(x \in f(x)_\sigma = f(y)_\sigma \subseteq f(a)_\sigma\). It is impossible, so \((x, y) \in \sigma_{M \setminus f(a)_\sigma}\) for all \(a \in M \). Conversely, let \(x, y \in M \) be such that \((x, y) \in \tau\). Then \((x, y) \in \sigma_{M \setminus f(a)_\sigma}\) for all \(a \in M \). Suppose that \((x, y) \notin \sigma\). By Lemma 2.6 \((d)\), \(f(x)_\sigma \neq f(y)_\sigma \). Without loss of generality, we may assume that \(f(x)_\sigma \not\subseteq f(y)_\sigma\). By Lemma 2.6 \((c)\), \(x \notin f(y)_\sigma\). Then \((x, y) \notin \sigma_{M \setminus f(y)_\sigma}\), which is impossible. Hence \((x, y) \in \sigma\), this proves that

\[
\sigma = \bigcap_{x \in M} \sigma_{M \setminus f(x)_{\sigma}}.
\]

\((b)\) By Corollary 1.2, \(M \setminus f(x)_\sigma = \emptyset \) or \(M \setminus f(x)_\sigma \in SP(M) \) for all \(x \in M \). Thus

\[
\{ \sigma_{M \setminus f(x)_\sigma} : x \in M \} \subseteq \{ \sigma_I : I \in SP(M) \}.
\]
On the Least (Ordered) Semilattice Congruences in Ordered Γ-Semigroups

By (a) and Theorem 3.1 (a), \(n \subseteq \sigma \). Therefore \(n \) is the least semilattice congruence on \(M \).

By the similarity of the proof of Theorem 3.2, we obtain

Theorem 3.3. If \(\sigma \in \text{OSC}(M) \), then the following statements hold.

(a) \(\sigma = \bigcap_{x \in M} \sigma_{M \setminus F(x), x} \).

(b) \(N \subseteq \sigma \), i.e., \(N \) is the least element of \(\text{OSC}(M) \).

Immediately from Theorem 3.2 and Theorem 3.3, we have

Corollary 3.4.

(a) \(n = \bigcap_{x \in M} \sigma_{M \setminus n(x)} \).

(b) \(N = \bigcap_{x \in M} \sigma_{M \setminus N(x)} \).

We shall give an example of an ordered Γ-semigroup \(M \) with \(N \) is not the least semilattice congruence on \(M \).

Example 3.5. Let \(M = \{a, b, c, d\} \) and \(\Gamma = \{\gamma\} \) with the multiplication defined by

\[
x \gamma y = \begin{cases}
 b & \text{if } x, y \in \{a, b\}, \\
 c & \text{otherwise.}
\end{cases}
\]

First to show that \(M \) is a Γ-semigroup, suppose not. Then there exist \(x, y, z \in M \) such that \((x \gamma y) \gamma z \neq x \gamma (y \gamma z) \). If \((x \gamma y) \gamma z = b \), then \(x, y, z \in \{a, b\} \). Thus \(x \gamma (y \gamma z) = b \), which is impossible. If \(x \gamma (y \gamma z) = b \), then \(x, y, z \in \{a, b\} \). Thus \((x \gamma y) \gamma z = b \), which is impossible. Hence \((x \gamma y) \gamma z = x \gamma (y \gamma z) \) for all \(x, y, z \in M \). Obviously, \(x \gamma y = y \gamma x \) for all \(x, y \in M \). Therefore \(M \) is a commutative Γ-semigroup.

Define a relation \(\leq \) on \(M \) as follows:

\[
\leq := \{(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (c, d), (d, c)\}.
\]

Then \((M, \leq) \) is a partially ordered set. Let \(x, y \in M \) be such that \(x \leq y \). Since \(x \gamma c = c \gamma x \) and \(x \gamma d = c \gamma d \) for all \(x, y \in M \) and \(b \leq c \), \(x \gamma z \leq y \gamma z \) and \(z \gamma x \leq z \gamma y \) for all \(z \in M \). Hence \(M \) is an ordered Γ-semigroup. We shall show that \(SC(M) = \{n, N\} \) and \(n \subset N \). Let

\[
\begin{align*}
\sigma_1 &= M \times M, \\
\sigma_2 &= \{(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (c, d), (d, c)\}.
\end{align*}
\]
It is easy to see that $\sigma_1, \sigma_2 \in SC(M)$. Since $(a\gamma a, a) = (b, a)$ and $(d\gamma d, d) = (c, d), \sigma_2 \subseteq \sigma$ for all $\sigma \in SC(M)$. Let $\sigma \in SC(M)$. Then we have the following two cases:

Case 1: $(b, c) \in \sigma$. Since $(a, b) \in \sigma$, $(a, c) \in \sigma$. Thus $(a, d), (b, d) \in \sigma$ because $(c, d) \in \sigma$. Hence $\sigma = \sigma_1$.

Case 2: $(b, c) \notin \sigma$. If $(a, c) \in \sigma$, then $(b, c) \in \sigma$ because $(b, a) \in \sigma$, which is impossible. If $(a, d) \in \sigma$, then $(a, c) \in \sigma$ because $(d, c) \in \sigma$, which is impossible. Hence $\sigma = \sigma_2$.

This proves that $SC(M) = \{\sigma_1, \sigma_2\}$. We shall show that $\sigma_1 = N$ and $\sigma_2 = n$.

We can easily get all ideals of M as follows:

$$P_1 = M, P_2 = \{c, d\}, P_3 = \{b, c\}, P_4 = \{c\}, P_5 = \{a, b, c\}, P_6 = \{b, c, d\}.$$

It is easy to see that $SP(M) = \{P_1, P_2\}$ and $OSP(M) = \{P_1\}$. By Theorem 3.1, we obtain that

$$N = \bigcap_{I \in OSP(M)} \sigma_I = \sigma_{P_1} = M \times M = \sigma_1$$

and

$$n = \bigcap_{I \in SP(M)} \sigma_I = \sigma_{P_1} \cap \sigma_{P_2} = \sigma_{P_2}.$$

We note here that

$$\sigma_{P_2} = \{(x, y) \in M \times M : x, y \in P_2 \text{ or } x, y \notin P_2\} \setminus \{(a, a), (b, b), (c, c), (d, d), (a, b), (b, a), (c, d), (d, c)\} = \sigma_2.$$

Hence $n = \sigma_2$, so $n \subset N$.

Acknowledgement: The authors are grateful to the referee for his useful comments.

References

(Received 21 July 2006)

M. Siripitukdet and A. Iampan
Department of Mathematics
Naresuan University
Phitsanulok 65000, Thailand.
e-mail: manojs@nu.ac.th, aiyaredi@nu.ac.th