Common Fixed Point Theorems for the Finite Family of Uniformly Quasi-sup(f_n) Lipschitzian Mappings and g_n—Expansive Mappings in Convex Metric Spaces

S. Kamkong and O. Tripak

Department of Mathematics and Statistics, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
Centre of Excellence in Mathematics, CHE, Si Ayutthaya Rd., Bangkok 10400, Thailand
e-mail: satornn@hotmail.com (S. Kamkong), orawan.t@psu.ac.th (O. Tripak)

Abstract: In this paper we introduce a new n-steps iterative process, which converges to a common fixed point of finite families of uniformly quasi-sup (f_n) Lipschitzian mappings and g_n—expansive mappings in convex metric spaces.

Keywords: convex metric space; common fixed point theorems; uniformly quasi-sup (f_n) Lipschitzian mapping; g_n—expansive mapping.

2010 Mathematics Subject Classification: 47H10.

1 Introduction

In 2011, Byung—Soo Lee defined new family of mappings: infinite family \(\{T_i\}_{i=1}^{\infty} \) of uniformly quasi-sup (f_n) Lipschitzian mappings and infinite family \(\{S_i\}_{i=1}^{\infty} \) of g_n—expansive mappings for approximating a common fixed point in convex metric spaces using a Noor—type iterative. The iterative is defined as follows: let \(C \) be a nonempty convex subset of \((X,d,W) \), \(\{T_i\}_{i=1}^{\infty} \) an infinite family of uniformly quasi-sup (f_n) Lipschitzian mappings and \(\{S_i\}_{i=1}^{\infty} \) a g_n—expansive
mappings of \(C \). Suppose that \(\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{a_n\}, \{b_n\}, \{c_n\}, \{d_n\}, \{e_n\}, \{l_n\} \) are sequences in \([0, 1]\) for which \(\alpha_n + \beta_n + \gamma_n = a_n + b_n + c_n = d_n + e_n + l_n = 1 \) for all \(n \in \mathbb{N} \). For \(x_1 \in X \), let \(\{x_n\} \) be a sequence defined by

\[
\begin{align*}
x_{n+1} &= W(S_n x_n, T_n^a y_n, u_n; \alpha_n, \beta_n, \gamma_n) \\
y_n &= W(S_n x_n, T_n^a z_n, v_n; \alpha_n, b_n, c_n) \\
z_n &= W(S_n x_n, T_n^a w_n; \alpha_n, e_n, l_n)
\end{align*}
\]

(1.1)

where \(\{u_n\}, \{v_n\}, \{w_n\} \) are any sequences in \(X \).

In 2013, Phueangratana and Suantai [2] introduced a new iterative process for approximating a common fixed point of a finite family \(\{T_i\}_{i=1}^N \) of generalized asymptotically quasi–nonexpansive mappings in a convex metric space. The following is the iterative process: let \(C \) be a convex subset of a convex metric space \((X, d, W)\) and \(\{T_i\}_{i=1}^N \) a finite family of generalized asymptotically quasi–nonexpansive mappings. Suppose that \(\{\alpha_n^{(i)}\}, \{\beta_n^{(i)}\}, \{\gamma_n^{(i)}\} \) are sequences in \([0, 1]\) for which \(\alpha_n^{(i)} + \beta_n^{(i)} + \gamma_n^{(i)} = 1 \) for each \(n \in \mathbb{N} \) and \(i = 1, 2, \ldots, N \). For \(x_1 \in C \), let \(\{x_n\} \) be a sequence defined by

\[
\begin{align*}
y_n^{(0)} &= x_n \\
y_n^{(1)} &= W(T_n y_n^{(0)}, y_n^{(0)}; \alpha_n^{(1)}) \\
y_n^{(2)} &= W(T_n^a y_n^{(1)}, y_n^{(1)}; \alpha_n^{(2)}) \\
y_n^{(3)} &= W(T_n^a y_n^{(2)}, y_n^{(2)}; \alpha_n^{(3)}) \\
&\vdots \\
y_n^{(N-1)} &= W(T_{N-1} y_n^{(N-2)}, y_n^{(N-2)}; \alpha_n^{(N-1)}) \\
x_{n+1} &= W(T_N y_n^{(N-1)}, y_n^{(N-1)}; \alpha_n^{(N)})
\end{align*}
\]

(1.2)

for all \(n \in \mathbb{N} \).

Motivated by [1] and [2], we define a new \(n \)-steps iterative process to approximate a common fixed point of a finite family \(\{T_i\}_{i=1}^N \) of uniformly quasi–sup (\(f_n \)) Lipschitzian mappings and a finite family \(\{S_i\}_{i=1}^N \) of \(g_n \)-expansive mappings in convex metric spaces. Our new iterative process is explained as follows: let \(C \) be a nonempty convex subset of a convex metric space \((X, d, W)\). Let \(\{T_i\}_{i=1}^N \) be a finite family of uniformly quasi–sup (\(f_n \)) Lipschitzian mappings and \(\{S_i\}_{i=1}^N \) a finite family of \(g_n \)-expansive mappings of \(C \). Suppose that \(\{\alpha_n^{(i)}\}, \{\beta_n^{(i)}\}, \{\gamma_n^{(i)}\} \) are sequences in \([0, 1]\) such that \(\alpha_n^{(i)} + \beta_n^{(i)} + \gamma_n^{(i)} = 1 \) for each \(n \in \mathbb{N} \) and \(i = 1, 2, \ldots, N \). For \(x_1 \in C \), let \(\{x_n\} \) be a sequence defined by

\[
\begin{align*}
y_n^{(0)} &= x_n \\
y_n^{(1)} &= W(S_n y_n^{(0)}, T_n^a y_n^{(0)}, u_n^{(0)}; \alpha_n^{(1)}, \beta_n^{(1)}, \gamma_n^{(1)}) \\
y_n^{(2)} &= W(S_n^a y_n^{(1)}, T_n^a y_n^{(1)}, u_n^{(1)}; \alpha_n^{(2)}, \beta_n^{(2)}, \gamma_n^{(2)}) \\
y_n^{(3)} &= W(S_n^a y_n^{(2)}, T_n^a y_n^{(2)}, u_n^{(2)}; \alpha_n^{(3)}, \beta_n^{(3)}, \gamma_n^{(3)}) \\
&\vdots \\
y_n^{(N-1)} &= W(S_n^{N-1} y_n^{(N-2)}, T_n^{N-1} y_n^{(N-2)}, u_n^{(N-2)}; \alpha_n^{(N-1)}, \beta_n^{(N-1)}, \gamma_n^{(N-1)}) \\
x_{n+1} &= y_n^{(N)} = W(S_n^N y_n^{(N-1)}, T_n^{N} y_n^{(N-1)}, u_n^{(N-1)}; \alpha_n^{(N)}, \beta_n^{(N)}, \gamma_n^{(N)})
\end{align*}
\]

(1.3)
for all $n \in \mathbb{N}$ and $\{u_n^{(i)}\}$ are any bounded sequences in C.

The purpose of this paper is to extend and improve some results of [1] and [2].

2 Preliminaries

In this section, the definition of mapping which will be used in the paper is presented as follow.

Definition 2.1 ([1] Definition 1.1), [2]). Let C be a nonempty subset of a metric space (X, d), T a self-mapping on C and $f : C \to (0, \infty)$ a function which is bounded above. The set of fixed point of T is denote by $F(T)$, i.e., $F(T) = \{x \in C : Tx = x\}$.

(i) T is f–expansive if

$$d(Tx, Ty) \leq \sup_{z \in C} f(z) \cdot d(x, y)$$

for all $x, y \in C$.

(ii) T is asymptotically f–expansive if there exists a sequence $\{x_n\}$ in C such that $\lim_{n \to \infty} f(x_n) = 1$ satisfying

$$d(T^n x, T^n y) \leq f(x_n) \cdot d(x, y)$$

for all $x, y \in C$ and $n \in \mathbb{N}$.

(iii) T is asymptotically quasi–f–expansive if there exists a sequence $\{x_n\}$ in C such that $\lim_{n \to \infty} f(x_n) = 1$ satisfying

$$d(T^n x, p) \leq f(x_n) \cdot d(x, p)$$

for all $x \in C, p \in F(T)$ and $n \in \mathbb{N}$.

(iv) T is uniformly quasi–sup (f) Lipschitzian if

$$d(T^n x, p) \leq \sup_{z \in C} f(z) \cdot d(x, p)$$

for all $x \in C, p \in F(T)$ and $n \in \mathbb{N}$.

(v) T is uniformly L–Lipschitzian if there exists constant $L > 0$ such that

$$d(T^n x, T^n y) \leq L \cdot d(x, y)$$

for all $x, y \in C$ and $n \in \mathbb{N}$.

Some definitions and useful results related to convex structure and convex metric space are recalled next.
Definition 2.2 ([1] Definition 1.2). Let \((X, d)\) be a metric space. A mapping \(W : X^3 \times I^3 \to X\) is said to be a *convex structure* on \(X\) if for each \(x, y, z \in X\) and \(\alpha, \beta, \gamma \in I\) with \(\alpha + \beta + \gamma = 1\) satisfy
\[
d(W(x, y, z; \alpha, \beta, \gamma), u) \leq \alpha d(x, u) + \beta d(y, u) + \gamma d(z, u)
\]
for all \(u \in X\). Moreover, a metric space \((X, d)\) with a convex structure \(W\) is called a convex metric space which will be denoted by \((X,d,W)\). A nonempty subset \(C\) of a convex metric space \((X,d,W)\) is said to be a convex subset of \((X,d)\) if \(W(x,y,z;\alpha,\beta,\gamma) \in C\) for \((x,y,z) \in C^3\) and \((\alpha,\beta,\gamma) \in I^3\) with \(\alpha + \beta + \gamma = 1\).

Definition 2.3 ([2]). Let \(C\) be a subset of a metric space \((X,d)\). A finite family of self mappings \(\{T_i\}_{i=1}^N\) and \(\{S_i\}_{i=1}^N\) of \(C\) are said to have *Condition A* if there exists a nondecreasing function \(f : [0, \infty) \to [0, \infty)\) with \(f(0) = 0\) and \(f(r) > 0\) and function \(g : [0, \infty) \to [0, \infty)\) with \(g(0) = 0\) and \(g(r) > 0\), respectively for all \(r > 0\) such that
\[
d(x,T_i(x)) \geq f(d(x,D)) \quad \text{and} \quad d(x,S_i(x)) \geq g(d(x,D))
\]
for some \(i, 1 \leq i \leq N\) and for all \(x \in C\), where \(d(x,D) = \inf \left\{ d(x,p) : p \in D = \left(\bigcap_{i=1}^N F(T_i) \right) \cap \left(\bigcap_{i=1}^N F(S_i) \right) \right\}\).

Definition 2.4 ([2]). Let \(C\) be a subset of a metric space \((X,d)\). A mapping \(T\) is *semi-compact* if for a sequence \(\{x_n\}\) in \(C\) with \(\lim_{n \to \infty} d(x_n,Tx_n) = 0\), there exists a subsequence \(\{x_{n_i}\}\) of \(\{x_n\}\) such that \(x_{n_i} \to p \in C\).

Lemma 2.5 ([3] Lemma 1.1, Remark 1.3, [4] Lemma 2). Let \(\{a_n\}, \{b_n\}, \{c_n\}\) be sequences of nonnegative real numbers such that \(\sum_{n=1}^\infty b_n < \infty\) and \(\sum_{n=1}^\infty c_n < \infty\) and for all \(n \in \mathbb{N}\),
\[
a_{n+1} \leq (1 + b_n) a_n + c_n.
\]
Then,
(i) \(\lim_{n \to \infty} a_n\) exists,
(ii) If \(\lim_{n \to \infty} a_n = 0\) then \(\lim_{n \to \infty} a_n = 0\),
(iii) If either \(\lim_{n \to \infty} a_n = 0\) or \(\limsup_{n \to \infty} a_n = 0\) then \(\lim_{n \to \infty} a_n = 0\).

Definition 2.6 ([2] Definition 2.3). Let \(\{r_n\}\) be a sequence in a metric space \((X,d)\) and \(D\) a subset of \(X\). We say that \(\{r_n\}\) is of *monotone type 1* with respect to \(D\) if there exist sequences \(\{r_n\}\) and \(\{s_n\}\) of nonnegative real numbers such that
\[
\sum_{n=1}^\infty r_n < \infty, \sum_{n=1}^\infty s_n < \infty \quad \text{and} \quad d(x_{n+1},p) \leq (1 + r_n) d(x_n,p) + s_n
\]
for all \(n \in \mathbb{N} \) and \(p \in D \). A sequence \(\{x_n\} \) is of monotone type II with respect to \(D \) if for each \(p \in D \) there exist sequences \(\{r_n\} \) and \(\{s_n\} \) of nonnegative real numbers such that
\[
\sum_{n=1}^{\infty} r_n < \infty, \sum_{n=1}^{\infty} s_n < \infty \quad \text{and} \quad \d(x_{n+1}, p) \leq (1 + r_n)d(x_n, p) + s_n
\]
for all \(n \in \mathbb{N} \).

Lemma 2.7 ([2 Theorem 2.4]). Let \((X, d)\) be a complete metric space, \(D \) a subset of \(X \) and \(\{x_n\} \) a sequence in \(X \). Then one has the following assertions:

(i) If \(\{x_n\} \) is of monotone type I with respect to \(D \) then \(\lim_{n \to \infty} d(x_n, D) \) exists.

(ii) If \(\{x_n\} \) is of monotone type I with respect to \(D \) and \(\lim \inf_{n \to \infty} d(x_n, D) = 0 \) then \(x_n \to p \) for some \(p \in X \) satisfying \(d(p, D) = 0 \). In particular, if \(D \) is closed then \(p \in D \).

(iii) If \(\{x_n\} \) is of monotone type II with respect to \(D \) then \(\lim_{n \to \infty} d(x_n, p) \) exists for all \(p \in D \).

3 Main Results

In this section, we let \(C \) be a nonempty convex subset of a convex metric space \((X, d, W)\). Let \(\{T_i\}_{i=1}^{N} \) be a finite family of uniformly quasi-sup \(\{f_n\} \) Lipschitzian self-mappings of \(C \) and \(\{S_i\}_{i=1}^{N} \) a finite family of \(g_n \)-expansive self-mappings of \(C \). Let \(f_n, g_n \) be functions which is bounded above such that
\[
U_n = \sup_{x \in C} f_n(x) \quad \text{and} \quad E_n = \sup_{x \in C} g_n(x). \quad \text{Suppose that} \quad U = \sup_{n \in \mathbb{N}} U_n \quad \text{and} \quad E = \sup_{n \in \mathbb{N}} E_n \quad \text{are finite and} \quad \{\alpha_n\}^{(i)}, \{\beta_n^{(i)}\}, \{\gamma_n^{(i)}\} \quad \text{are sequences in} \quad [0, 1] \quad \text{such that} \quad \alpha_n^{(i)} + \beta_n^{(i)} + \gamma_n^{(i)} = 1 \quad \text{for each} \quad n \in \mathbb{N} \quad \text{and} \quad \delta_n^{(i)} = \alpha_n^{(i)} + \beta_n^{(i)}, \delta_n = \max_{1 \leq i \leq N} \{\delta_n^{(i)}\}, \gamma_n = \max_{1 \leq i \leq N} \{\gamma_n^{(i)}\} \quad \text{and} \quad d(u_n, p) = \max_{1 \leq i \leq N} \{d(u_n^{(i-1)}, p)\}. \quad \text{Let} \quad A = \max(E, U) \quad \text{sequences} \quad \{\delta_n A\} \subset [1, \infty) \quad \text{and} \quad \{\gamma_n d(u_n, p)\} \subset [0, \infty) \quad \text{such that} \quad \sum_{n=1}^{\infty} (\delta_n A - 1) < \infty \quad \text{and} \quad \sum_{n=1}^{\infty} \gamma_n d(u_n, p) < \infty. \quad \text{Suppose} \quad D = \left(\bigcap_{i=1}^{N} F(T_i) \right) \bigcap \left(\bigcap_{i=1}^{N} F(S_i) \right) \quad \text{is nonempty. Let} \quad x_1 \in C \quad \text{and the sequence} \quad \{x_n\} \quad \text{be the iteration defined as \[\text{Lemma 3.3}. \] We shall first begin by constructing the following useful inequalities.

Lemma 3.1. For each \(i = 1, 2, \ldots, N-1, n \in \mathbb{N} \) and \(p \in D \). The following results hold.

(i) \(d(g_n^{(i)}, p) \leq \delta_n^{(i)} \cdot A \cdot d(g_n^{(i-1)}, p) + \gamma_n d(u_n, p). \)

(ii) \(d(g_n^{(i)}, p) \leq \delta_n^{(i)} \cdot A \cdot d(x_n, p) + \left(\sum_{j=1}^{i} \delta_n^{j-1} A^{j-1} \right) \gamma_n d(u_n, p). \)
(iii) \(d(x_{n+1}, p) \leq \delta_n \cdot A^i \cdot d(y_n^{(N-i)}, p) + \sum_{j=1}^{i} \delta_n^{j-1} A^{j-1} \gamma_n d(u_n, p). \)

Proof. (i) We need to show that

\[
d(y_n^{(i)}, p) \leq \delta_n \cdot A \cdot d(y_n^{(i-1)}, p) + \gamma_n d(u_n, p)
\]

for any \(i = 1, 2, \ldots, N - 1, \ n \in \mathbb{N} \) and \(p \in D. \) By Definition 2.2, Definition 2.1(i), (iv), \(U_n = \sup_{x \in C} f_n(x), \ E_n = \sup_{x \in C} g_n(x), \ U = \sup_n U_n \) and \(E = \sup_n E_n, \) we have the following inequality,

\[
d(y_n^{(i)}, p) = d(W(S_n^{(i-1)}, T_n^{(i-1)}, u_n^{(i-1)}; \alpha_n^{(i)}, \beta_n^{(i)}, \gamma_n^{(i)}), p)
\]

\[
\leq \alpha_n^{(i)} d(S_n^{(i-1)}, y_n^{(i-1)}, p) + \beta_n^{(i)} d(T_n^{(i-1)}, y_n^{(i-1)}, p) + \gamma_n^{(i)} d(u_n^{(i-1)}, p)
\]

\[
\leq \alpha_n^{(i)} d(S_n^{(i-1)}, y_n^{(i-1)}, p) + \beta_n^{(i)} d(T_n^{(i-1)}, y_n^{(i-1)}, p) + \gamma_n^{(i)} d(u_n^{(i-1)}, p)
\]

\[
\leq \alpha_n^{(i)} E_n d(y_n^{(i-1)}, p) + \beta_n^{(i)} U_n d(y_n^{(i-1)}, p) + \gamma_n^{(i)} d(u_n^{(i-1)}, p)
\]

\[
= (\alpha_n^{(i)} E + \beta_n^{(i)} U) d(y_n^{(i-1)}, p) + \gamma_n^{(i)} d(u_n^{(i-1)}, p).
\]

Thus by \(\delta_n^{(i)} = \alpha_n^{(i)} + \beta_n^{(i)}, \ A = \max\{E, U\}, \ \delta_n = \max_{1 \leq i \leq N} \{\delta_n^{(i)}\}, \ \gamma_n = \max_{1 \leq i \leq N} \{\gamma_n^{(i)}\} \)

and \(d(u_n, p) = \max_{1 \leq i \leq N} \{d(u_n^{(i-1)}, p)\}, \) we can rewrite the above inequalities as

\[
d(y_n^{(i)}, p) \leq \delta_n^{(i)} A d(y_n^{(i-1)}, p) + \gamma_n^{(i)} d(u_n^{(i-1)}, p)
\]

\[
\leq \delta_n A d(y_n^{(i-1)}, p) + \gamma_n d(u_n, p). \tag{3.1}
\]

(ii) We are going to show that

\[
d(y_n^{(i)}, p) \leq \delta_n^i A^i d(x_n, p) + \sum_{j=1}^{i} \delta_n^{j-1} A^{j-1} \gamma_n d(u_n, p)
\]

for all \(i = 1, 2, \ldots, N - 1, \) by using mathematical induction. Recall inequality (3.1), for any \(i = 1, 2, \ldots, N - 1, \ n \in \mathbb{N} \) and \(p \in D, \) we know that

\[
d(y_n^{(i)}, p) \leq \delta_n A d(y_n^{(i-1)}, p) + \gamma_n d(u_n, p).
\]

For \(i = 1, \)

\[
d(y_n^{(1)}, p) \leq \delta_n A d(y_n^{(0)}, p) + \gamma_n d(u_n, p)
\]

\[
= \delta_n A d(x_n, p) + \gamma_n d(u_n, p) \sum_{j=1}^{1} \delta_n^{j-1} A^{j-1}.
\]

Assume that for some \(m, 1 \leq m \leq N - 2, \)

\[
d(y_n^{(m)}, p) \leq \delta_n^m A^m d(x_n, p) + \gamma_n d(u_n, p) \sum_{j=1}^{m} \delta_n^{j-1} A^{j-1}.
\]
Hence,
\[
d(y^{(m+1)}_n, p) \leq \delta_n Ad(y^{(m)}_n, p) + \gamma_n d(u_n, p)
\leq \delta_n A\left[\sum_{j=1}^{m} \delta_n^{j-1} A^{j-1} \gamma_n d(u_n, p)\right] + \gamma_n d(u_n, p)
= \delta_n^{m+1} A^{m+1} d(x_n, p) + \left[\sum_{j=1}^{m+1} \delta_n^{j-1} A^{j-1}\right] \gamma_n d(u_n, p).
\]

Therefore, by mathematical induction, we have,
\[
d(y^{(i)}_n, p) \leq \delta_n^i A^i d(x_n, p) + \left[\sum_{j=1}^{i} \delta_n^{j-1} A^{j-1}\right] \gamma_n d(u_n, p)
\]
for all \(i = 1, 2, \ldots, N-1\).

(iii) We prove the following inequality, for any \(i = 1, 2, \ldots, N-1\),
\[
d(x_{n+1}, p) \leq \delta_n^i \cdot A^i \cdot d(y^{N-i}_n, p) + \left[\sum_{j=1}^{i} \delta_n^{j-1} A^{j-1}\right] \gamma_n d(u_n, p).
\]

Now, for any \(i = 1, 2, \ldots, N-1, n \in \mathbb{N}\) and \(p \in D\),
\[
d(x_{n+1}, p) = d(W(S_N y^{(N-1)}_n, T_N y^{(N-1)}_n, u^{(N-1)}_n; \alpha^{(N)}_n, \beta^{(N)}_n, \gamma^{(N)}_n), p)
\leq \alpha^{(N)}_n d(S_N y^{(N-1)}_n, p) + \beta^{(N)}_n d(T_N y^{(N-1)}_n, p) + \gamma^{(N)}_n d(u^{(N-1)}_n, p)
\leq \alpha^{(N)}_n Ed(y^{(N-1)}_n, p) + \beta^{(N)}_n Ud(y^{(N-1)}_n, p) + \gamma^{(N)}_n d(u^{(N-1)}_n, p)
\leq \alpha^{(N)}_n Ad(y^{(N-1)}_n, p) + \beta^{(N)}_n Ad(y^{(N-1)}_n, p) + \gamma^{(N)}_n d(u^{(N-1)}_n, p).
\]

Together with (i), we have
\[
d(x_{n+1}, p) \leq \delta_n^{(N)} Ad(y^{(N-1)}_n, p) + \gamma^{(N)}_n d(u^{(N-1)}_n, p)
\leq \delta_n Ad(y^{(N-1)}_n, p) + \gamma_n d(u_n, p)
\leq \delta_n A\left[\delta_n Ad(y^{(N-2)}_n, p) + \gamma_n d(u_n, p)\right] + \gamma_n d(u_n, p)
= \delta_n^2 A^2 d(y^{(N-2)}_n, p) + \delta_n A\gamma_n d(u_n, p) + \gamma_n d(u_n, p)
\leq \delta_n^2 A^2 \left[\delta_n Ad(y^{(N-3)}_n, p) + \gamma_n d(u_n, p)\right] + (\delta_n A + 1) \gamma_n d(u_n, p)
= \delta_n^3 A^3 d(y^{(N-3)}_n, p) + \delta_n^2 A^2 \gamma_n d(u_n, p) + \delta_n A + 1) \gamma_n d(u_n, p)
= \delta_n^3 A^3 d(y^{(N-3)}_n, p) + (\delta_n^2 A^2 + \delta_n A + 1) \gamma_n d(u_n, p)
\vdots
\]
\[
\leq \delta_n^i A^i d(y^{(N-i)}_n, p) + \left[\sum_{j=1}^{i} \delta_n^{j-1} A^{j-1}\right] \gamma_n d(u_n, p)
\]
for all \(i = 1, 2, \ldots, N-1\).
Remark 3.2. Lemma 3.1 generalizes main results of Lemma 3.1 in [2].

Lemma 3.3. The following results hold.

(i) There exist two sequences \(\{\eta_n\} \) and \(\{\sigma_n\} \) such that \(\sum_{n=1}^{\infty} \eta_n < \infty \) and

\[
\sum_{n=1}^{\infty} \sigma_n < \infty \quad \text{and} \quad d(x_{n+1},p) \leq (1 + \eta_n)d(x_n,p) + \sigma_n
\]

for all \(p \in D \) and \(n \in \mathbb{N} \).

(ii) \(\lim_{n \to \infty} d(x_n,p) \) exists for all \(p \in D \).

Proof. (i) Let \(p \in D \) and \(n \in \mathbb{N} \). By Lemma 3.1 (ii), (iii), we get

\[
d(x_{n+1},p) \leq \delta_nAd(y^{(N-1)}_n,p) + \gamma_n d(u_n,p)
\]

\[
\leq \delta_nA^j[x^{(N-1)}A^{N-1}d(x_n,p) + \sum_{j=1}^{N-1} \delta^{j-1}_n A^{j-1} \gamma_n d(u_n,p)] + \gamma_n d(u_n,p)
\]

\[
= \delta^n_n A^N d(x_n,p) + \sum_{j=1}^{N} \delta^{j-1}_n A^{j-1} \gamma_n d(u_n,p)
\]

\[
= (1 + \eta_n)d(x_n,p) + \sigma_n
\]

where \(\eta_n = \sum_{j=1}^{N} \binom{N}{j} (\delta_n A - 1)^j \) and \(\sigma_n = \sum_{j=1}^{N} \delta^{j-1}_n A^{j-1} \gamma_n d(u_n,p) \).

Since \(\sum_{n=1}^{\infty} (\delta_n A - 1) \) and \(\sum_{n=1}^{\infty} \gamma_n d(u_n,p) \) are both finite, it follows that \(\sum_{n=1}^{\infty} \eta_n < \infty \)

and \(\sum_{n=1}^{\infty} \sigma_n < \infty \).

(ii) Let \(p \in D \). Then, by the above result, there exist two sequences \(\{\eta_n\} \) and \(\{\sigma_n\} \) such that \(\sum_{n=1}^{\infty} \eta_n < \infty \) and \(\sum_{n=1}^{\infty} \sigma_n < \infty \) satisfying

\[
d(x_{n+1},p) \leq (1 + \eta_n)d(x_n,p) + \sigma_n
\]

for all \(n \in \mathbb{N} \). Then, by Lemma 2.3 (i), \(\lim_{n \to \infty} d(x_n,p) \) exists for all \(p \in D \).

Remark 3.4. Lemma 3.3 generalizes main results of Lemma 3.2 in [2].

Theorem 3.5. The following results hold when \(D \) is closed.

(i) If \(\{x_n\} \) converges to a common fixed point in \(D \) then \(\lim_{n \to \infty} d(x_n,D) = \lim_{n \to \infty} d(x_n,D) = 0 \).

(ii) If either \(\lim_{n \to \infty} d(x_n,D) = 0 \) or \(\lim_{n \to \infty} d(x_n,D) = 0 \) then \(\{x_n\} \) converges to a common fixed point in \(D \).
Lipschitzian self−self \(U \), \(d, W \) space (\(X \)).

Then, by Lemma 2 result together with Lemma 3.

4 Applications

Common Fixed Point Theorems ...

315

Proof. (i) Suppose that \(\{ x_n \} \) converges to a common fixed point \(p \) in \(D \). Then for \(\epsilon > 0 \), there exists \(N \in \mathbb{N} \) such that if \(n \geq N \) then

\[
d(x_n, p) < \frac{\epsilon}{2}.
\]

Taking infimum over \(p \in D \), for \(n \geq N \) we have

\[
dx_n, D \leq \frac{\epsilon}{2} < \epsilon.
\]

We have \(\lim \limits_{n \to \infty} d(x_n, D) = 0 \), i.e., \(\lim \inf \limits_{n \to \infty} d(x_n, D) = \lim \sup \limits_{n \to \infty} d(x_n, D) = 0 \).

(ii) Assume that \(\lim \inf \limits_{n \to \infty} d(x_n, D) = 0 \) or \(\lim \sup \limits_{n \to \infty} d(x_n, D) = 0 \). Using this result together with Lemma 3(i) and Lemma 3(iii) we have \(\lim \limits_{n \to \infty} d(x_n, D) = 0 \).

Then, by Lemma 2(ii), \(\lim \limits_{n \to \infty} x_n \) exists that is there exists \(q \in X \) such that \(x_n \to q \) as \(n \to \infty \). Since \(D \) is closed, \(\{ x_n \} \) converges to a common fixed point in \(D \).

4 Applications

In this section, we let \(C \) be a nonempty convex subset of a convex metric space \((X, d, W) \). Let \(\{ T_i \}_{i=1}^N \) be a finite family of uniformly quasi−sup \((f_n)\) Lipschitzian self−mappings of \(C \) and \(\{ S_i \}_{i=1}^N \) a finite family of \(g_n \)−expansive self−mappings of \(C \). Let \(f_n, g_n \) be functions which is bounded above such that \(U_n = \sup f_n(x) \) and \(E_n = \sup g_n(x) \). Suppose that \(U = \sup \limits_{n \to \infty} U_n \) and \(E = \sup \limits_{n \in \mathbb{N}} E_n \) are finite and \(\{ \alpha_n^{(i)} \}, \{ \beta_n^{(i)} \}, \{ \gamma_n^{(i)} \} \) are sequences in \([0, 1]\) such that \(\alpha_n^{(i)} + \beta_n^{(i)} + \gamma_n^{(i)} = 1 \) for each \(n \in \mathbb{N} \). Let \(\delta_n^{(i)} = \alpha_n^{(i)} + \beta_n^{(i)} \), \(\delta_n = \max \{ \delta_n^{(i)} \} \), \(\gamma_n = \max \{ \gamma_n^{(i)} \} \) and \(d(u_n, p) = \max \{ d(u_n^{(i)}, p) \} \). Let \(A = \max \{ E, U \} \), sequences \(\{ \delta_n A \} \subset [1, \infty) \) and \(\{ \gamma_n d(u_n, p) \} \subset [0, \infty) \) such that \(\sum \limits_{n=1}^\infty (\delta_n A − 1) < \infty \) and \(\sum \limits_{n=1}^\infty \gamma_n d(u_n, p) < \infty \). Suppose \(D = \left(\bigcap \limits_{i=1}^N F(T_i) \right) \bigcap \left(\bigcap \limits_{i=1}^N F(S_i) \right) \) is nonempty and closed. Let \(x_1 \in C \) and the sequence \(\{ x_n \} \) be the iteration defined by \(1.3 \). First, we prove the following lemma.

Lemma 4.1. A sequence \(\{ x_n \} \) converges to common fixed point of the families \(\{ T_i \}_{i=1}^N \) and \(\{ S_i \}_{i=1}^N \) if and only if \(\lim \inf \limits_{n \to \infty} d(x_n, D) = 0 \), \(d(x_n, D) = \inf \{ d(x_n, p) : p \in D \} \).

Proof. The necessity condition is obvious. Thus we will only prove the sufficiency. Suppose that \(\lim \inf \limits_{n \to \infty} d(x_n, D) = 0 \). Then by Lemma 3(i), there exist two se-
quences \(\{ \eta_n \} \) and \(\{ \sigma_n \} \) such that \(\sum_{n=1}^{\infty} \eta_n < \infty \) and \(\sum_{n=1}^{\infty} \sigma_n < \infty \) satisfying

\[
d(x_{n+1},p) \leq (1 + \eta_n)d(x_n,p) + \sigma_n
\]

for all \(p \in D \) and all \(n \in \mathbb{N} \). By Definition 2.6 we have \(\{ x_n \} \) is of monotone type 1 with respect to \(D \). By Lemma 2.7(ii), we have desired.

Remark 4.2. Lemma 4.1 generalizes main results of Theorem 3.3 in [2].

The following theorem shows that the sequence \(\{ x_n \} \) converges to common fixed point of the families \(\{ T_i \}_{i=1}^{N} \) and \(\{ S_i \}_{i=1}^{N} \) with two added properties: Condition A (Definition 2.3) and semi-compact (Definition 2.4).

Theorem 4.3. Let \(C \) be a closed convex subset of a complete uniformly convex metric space \((X,d,W) \) with continuous convex structure. Let \(\{ T_i \}_{i=1}^{N} \) and \(\{ S_i \}_{i=1}^{N} \) be finite families of uniformly \(L \)-Lipschitzian self-mappings of \(C \). Suppose that \(\lim_{n \to \infty} d(x_n,T_ix_n) = 0 = \lim_{n \to \infty} d(x_n,S_ix_n) \) for all \(i = 1,2,\ldots,N \). If one of the following is satisfied:

(i) \(\{ T_i \}_{i=1}^{N} \) and \(\{ S_i \}_{i=1}^{N} \) satisfy Condition A,

(ii) one member of the families \(\{ T_i \}_{i=1}^{N} \) and \(\{ S_i \}_{i=1}^{N} \) are semi-compact, then \(\{ x_n \} \) converges to common fixed point of two families \(\{ T_i \}_{i=1}^{N} \) and \(\{ S_i \}_{i=1}^{N} \).

Proof. (i) Suppose that \(\{ T_i \}_{i=1}^{N} \) and \(\{ S_i \}_{i=1}^{N} \) are satisfy Condition A. Then by Definition 2.3 we have there exists a nondecreasing functions such that \(f : [0, \infty) \to [0, \infty) \) with \(f(0) = 0 \) and \(f(r) > 0 \) for all \(r \in (0, \infty) \),

\[
g : [0, \infty) \to [0, \infty) \with g(0) = 0 \text{ and } g(r) > 0 \text{ for all } r \in (0, \infty)
\]

with \(d(x_n, T_ix_n) \geq f(d(x_n,D)) \) and \(d(x_n, S_ix_n) \geq g(d(x_n,D)) \). Hence,

\[
\lim_{n \to \infty} d(x_n, T_ix_n) \geq \lim_{n \to \infty} f(d(x_n,D)),
\]

\[
\lim_{n \to \infty} d(x_n, S_ix_n) \geq \lim_{n \to \infty} g(d(x_n,D)),
\]

for some \(1 \leq i \leq N \). By the assumption we know that \(\lim_{n \to \infty} d(x_n, T_ix_n) = 0 = \lim_{n \to \infty} d(x_n, S_ix_n) \). It follows that

\[
\lim_{n \to \infty} d(x_n, D) = 0.
\]

Then by Lemma 4.1 the sequence \(\{ x_n \} \) converges to common fixed point of the families \(\{ T_i \}_{i=1}^{N} \) and \(\{ S_i \}_{i=1}^{N} \).

(ii) Suppose that \(\{ T_i \}_{i=1}^{N} \) is semi-compact. Then, by Definition 2.4 there exists a subsequence \(\{ x_{n_j} \} \) of \(\{ x_n \} \) such that \(x_{n_j} \to p \in C \). Hence, for each \(1 \leq i \leq N \),

\[
d(p, T_ip) \leq d(p, x_{n_j}) + d(x_{n_j}, T_ix_{n_j}) + d(T_ix_{n_j}, T_ip)
\]

\[
\leq d(p, x_{n_j}) + d(x_{n_j}, T_ix_{n_j}) + Ld(x_{n_j}, p)
\]

\[
\leq (1 + L)d(p, x_{n_j}) + d(x_{n_j}, T_ix_{n_j})
\]

\[
\to 0.
\]
Thus, we have $T_i p \to p$ for $1 \leq i \leq N$. The proof in case of $\{S_i\}_{i=1}^{N}$ being semi–compact is similar to prove the above case. Thus, $p \in D = \left(\bigcap_{i=1}^{N} F(T_i) \right) \bigcap \left(\bigcap_{i=1}^{N} F(S_i) \right)$. By continuity of $x \mapsto d(x, D)$, we obtain

$$\lim_{j \to \infty} d(x_{n_j}, D) = d(p, D) = 0,$$

$$\lim_{k \to \infty} d(x_{n_k}, D) = d(p, D) = 0.$$

It follows by Lemma 3(iii) that $\lim_{n \to \infty} d(x_n, D) = 0$. Hence, by Lemma 4.1 we have $\{x_n\}$ converges to common fixed point of the family $\{T_i\}_{i=1}^{N}$ and $\{S_i\}_{i=1}^{N}$.

Remark 4.4. Theorem 4.3 generalizes main results of Theorem 3.7 in [2].

Acknowledgements: The authors are grateful to Professor Suthep Suantai for valuable suggestion and comments. Also the authors would like to thank the Centre of Excellence in Mathematics, Thailand and Department of Mathematics and Statistics, Faculty of Science, Prince of Songkla University for partially financing this study.

References

(Received 17 March 2015)

(Accepted 16 May 2015)