Convergence Criteria of Viscosity Common Fixed Point Iterative Process for Asymptotically Nonexpansive Nonself Mappings in Banach Spaces

Jantana Ayaragarnchanakul

Department of Mathematics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkla 90110, Thailand
Centre of Excellence in Mathematics, CHE, Si Ayutthaya Road, Bangkok 10400, Thailand
e-mail: jantana.a@psu.ac.th

Abstract: Let X be a real arbitrary Banach space and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. For $i = 1, 2$, let $T_i : C \to X$ be an asymptotically nonexpansive nonself mapping such that $F(T_1) \cap F(T_2) \neq \emptyset$ in C. Let $f : C \to C$ be a contractive mapping and let $\{\alpha_n\}$ and $\{\beta_n\}$ be real sequences in $[0, 1]$. Define $\{x_n\}$ and $\{y_n\}$ to be the iterative sequences

$$y_n = P(\alpha_nf(x_n) + (1 - \alpha_n)(\beta_nx_n + (1 - \beta_n)T_2(PT_2)^{n-1}x_n)),$$
$$x_{n+1} = P(\gamma_nf(y_n) + (1 - \gamma_n)(\delta_ny_n + (1 - \delta_n)T_1(PT_1)^{n-1}y_n)), \quad n \geq 1.$$

Some strong convergence theorems of the sequence $\{x_n\}$ to a common fixed point of T_1 and T_2 are established under appropriate conditions.

Keywords: Asymptotically nonexpansive mapping; Nonexpansive retraction; Banach space; Common fixed point.

2010 Mathematics Subject Classification: 47H09; 47H10.

1This research was supported by the Centre of Excellence in Mathematics, the Commission of Higher Education, Thailand.

Copyright © 2011 by the Mathematical Association of Thailand. All rights reserved.
1 Introduction

The concept of asymptotically nonexpansive self-mappings which is a generalization of the class of nonexpansive self-mappings was first introduced in 1972 by Goebel and Kirk [1]. They proved that any asymptotically nonexpansive self-mapping of a nonempty closed convex bounded subset of a uniformly convex Banach space possesses a fixed point. Since then, the weak and strong convergence problems of iterative sequences (with errors) for asymptotically nonexpansive self-mappings have been studied by many authors (see, for example, [2–7]). In 2003, Chidume et al. [8] introduced the concept of asymptotically nonexpansive nonself-mappings. Such a nonself mapping is defined as follows. Let X be a real normed space, C a nonempty subset of X and $P : X \to C$ the nonexpansive retraction of X onto C. A nonself mapping $T : C \to X$ is called asymptotically nonexpansive if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $k_n \to 1$ as $n \to \infty$ such that

$$\|T(P(T)x) - T(P(T)y)\| \leq k_n \|x - y\|,$$

for all $x, y \in C$ and $n \geq 1$. They proved the following.

Theorem 1.1. Let E be a real uniformly convex Banach space, K closed convex nonempty subset of E. Let $T : K \to E$ be completely continuous and asymptotically nonexpansive mapping with sequence $\{k_n\} \subset [1, \infty)$ such that $\sum_{n \geq 1} (k_n^2 - 1) < \infty$ and $F(T) \neq \emptyset$. Let $\alpha_n \in (0, 1)$ be such that $\epsilon \leq 1 - \alpha_n \leq 1 - \epsilon$, $\forall n \geq 1$ and some $\epsilon > 0$. From arbitrary $x_1 \in K$, define the sequence $\{x_n\}$ by

$$x_n = P((1 - \alpha_n)x_n + \alpha_n T(P(T)x_{n-1})),$$

$n \geq 1$.

Then $\{x_n\}$ converges strongly to some fixed point of T.

They also proved the following theorem which was about the weak convergence of $\{x_n\}$ to some fixed point of T.

Theorem 1.2. Let E be a real uniformly convex Banach space which has a Fréchet differentiable norm, K closed convex nonempty subset of E. Let $T : K \to E$ be asymptotically nonexpansive mapping with sequence $\{k_n\} \subset [1, \infty)$ such that $\sum_{n \geq 1} (k_n^2 - 1) < \infty$ and $F(T) \neq \emptyset$. Let $\alpha_n \in (0, 1)$ be such that $\epsilon \leq 1 - \alpha_n \leq 1 - \epsilon$, $\forall n \geq 1$ and some $\epsilon > 0$. From arbitrary $x_1 \in K$, define the sequence $\{x_n\}$ by

$$x_n = P((1 - \alpha_n)x_n + \alpha_n T(P(T)x_{n-1})),$$

$n \geq 1$.

Then $\{x_n\}$ converges weakly to some fixed point of T.

Recently, in 2008, Lou et al. [6] studied the viscosity approximation fixed point for asymptotically nonexpansive self-mappings in Banach spaces. They proved the following theorems.
Theorem 1.3. Let K be a nonempty closed convex subset of a Banach space X which has a uniformly Gâteaux differentiable norm and $T : K \to K$ an asymptotically nonexpansive mapping with $F(T) \neq \emptyset$ and f a contraction on C. Let $\{\alpha_n\}, \{\beta_n\}$ be sequences in $(0, 1)$ satisfying
\[
C1 : \lim_{n \to \infty} \alpha_n = 0; \quad C2 : \lim_{n \to \infty} \frac{k_n - 1}{\alpha_n} = 0.
\]
Then the sequence $\{z_n\}$ defined by
\[
z_{n+1} = \alpha_n f(z_n) + (1 - \alpha_n) T^n z_n,
\]
converges strongly to the unique solution of the variational inequality:
\[
p \in F(T) \text{ such that } \langle (I - f)p, j(p - x^*) \rangle \leq 0 \quad \forall x^* \in F(T).
\]

Theorem 1.4. Let K be a nonempty closed convex subset of a uniformly convex Banach space X which has a uniformly Gâteaux differentiable norm and $T : K \to K$ an asymptotically nonexpansive mapping with $F(T) \neq \emptyset$ and f a contraction on C. Let $\{\alpha_n\}, \{\beta_n\}$ be sequences in $(0, 1)$ satisfying
\[
C1 : \lim_{n \to \infty} \alpha_n = 0; \quad C2 : \sum_{n=1}^{\infty} \alpha_n = \infty \quad C3 : \lim_{n \to \infty} \frac{k_n - 1}{\alpha_n} = 0.
\]
For arbitrary $x_0 \in K$, let the sequence $\{x_n\}$ be defined iteratively by
\[
x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + \gamma_n T^n x_n.
\]
Assume
(i) $\alpha_n, \beta_n, \gamma_n \in [0, 1], \alpha_n + \beta_n + \gamma_n = 1$;
(ii) $0 < \inf_{n \to \infty} \beta_n \leq \sup_{n \to \infty} \beta_n < 1$;
(iii) T satisfies the asymptotically regularity; $\lim_{n \to \infty} \|T^{n+1} x_n - T^n x_n\| = 0$.
Then the sequence $\{x_n\}$ converges strongly to the unique solution of the variational inequality:
\[
p \in F(T) \text{ such that } \langle (I - f)p, j(p - x^*) \rangle \leq 0 \quad \forall x^* \in F(T).
\]

2 Preliminaries

In this paper, we study a viscosity approximation for some common fixed point of asymptotically nonexpansive nonself mappings in Banach spaces as follows.

Let X be a real arbitrary Banach space and let C be a nonempty closed convex nonexpansive retract of X with P as a nonexpansive retraction. A mapping $f : C \to C$ is called a contractive mapping if there exists a constant $\alpha \in (0, 1)$ such that
\[
\|f(x) - f(y)\| \leq \alpha \|x - y\|,
\]
for all \(x, y \in C \). We use \(d(x, F) \) for the distance from the point \(x \) to the set \(F \) and \(F(T) \) for the set of all fixed points of the mapping \(T \). For \(i = 1, 2 \), let \(T_i : C \to X \) be an asymptotically nonexpansive nonself mapping such that \(F(T_1) \cap F(T_2) \neq \emptyset \).

Let \(f : C \to C \) be a contractive mapping and let \(\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\} \) and \(\{\delta_n\} \) be real sequences in \([0, 1]\). For arbitrary \(x_1 \in C \), let \(\{x_n\} \) and \(\{y_n\} \) be the iterative sequences defined by

\[
\begin{align*}
y_n & = P(\alpha_n f(x_n) + (1 - \alpha_n)(\beta_n x_n + (1 - \beta_n)T_2(PT_2)^n-1 x_n)), \\
x_{n+1} & = P(\gamma_n f(y_n) + (1 - \gamma_n)(\delta_n y_n + (1 - \delta_n)T_1(PT_1)^n-1 y_n)), \quad n \geq 1. \quad (2.1)
\end{align*}
\]

Here, for convenience, we use the following definition of asymptotically nonexpansive nonself mapping. A nonself mapping \(T : C \to X \) is called asymptotically nonexpansive if there exists a sequence \(\{r_n\} \subset [0, 1) \) with \(r_n \to 0 \) as \(n \to \infty \) such that

\[
\|T(PT)^n-1 x - T(PT)^n-1 y\| \leq (1 + r_n)\|x - y\|,
\]

for all \(x, y \in C \) and \(n \geq 1 \).

We need the following lemmas for the main results in this paper.

Lemma 2.1 ([9, Lemma 2.1]). Let \(\{a_n\}, \{b_n\} \) and \(\{\delta_n\} \) be sequences of nonnegative real numbers satisfying the inequality

\[
a_{n+1} \leq (1 + \delta_n)a_n + b_n \quad \text{for all } n.
\]

If \(\sum_{n=1}^{\infty} \delta_n < \infty \) and \(\sum_{n=1}^{\infty} b_n < \infty \), then

1. \(\lim_{n \to \infty} a_n \) exists.
2. \(\lim_{n \to \infty} a_n = 0 \) if \(\{a_n\} \) has a subsequence converging to zero.

Lemma 2.2. Let \(C \) be a nonempty closed subset of a Banach space \(X \) and \(T : C \to X \) be an asymptotically nonexpansive nonself mapping with the fixed point set \(F(T) \neq \emptyset \). Then \(F(T) \) is a closed subset in \(C \).

Proof. Assume that \(T : C \to X \) is an asymptotically nonexpansive nonself mapping with respect to \(\{r_n\} \). Let \(\{p_n\} \) be a sequence in \(F(T) \) such that \(p_n \to p \) as \(n \to \infty \). Since \(C \) is closed and \(\{p_n\} \) is a sequence in \(C \), we must have \(p \in C \). Since \(T : C \to X \) is asymptotically nonexpansive, we obtain

\[
\|Tp - p_n\| = \|Tp - Tp_n\| \leq (1 + r_1)\|p - p_n\|.
\]

Taking limit as \(n \to \infty \) and using the continuity of the norm, we obtain \(\|Tp - p\| \leq 0 \), which implies that \(Tp = p \). The proof is complete. \(\square \)
3 Main Results

In this section, we present our main results. The first theorem gives the necessary and sufficient condition for the convergence of the sequence \(\{x_n\} \) defined by (2.1).

Theorem 3.1. Let \(X \) be a real arbitrary Banach space and let \(C \) be a nonempty closed convex nonexpansive retract of \(X \) with \(P \) as a nonexpansive retraction. For \(i = 1, 2 \), let \(T_i : C \to X \) be an asymptotically nonexpansive nonself mapping with respect to \(\{r_i^{(n)}\} \) such that \(F(T_1) \cap F(T_2) \neq \emptyset \) and \(\sum_{n=1}^{\infty} r_n < \infty \), where \(r_n = \max\{r_1^{(n)}, r_2^{(n)}\} \). Let \(f : C \to C \) be a contractive mapping and let \(\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\} \) and \(\{\delta_n\} \) be real sequences in \([0, 1]\) such that \(\sum_{n=1}^{\infty} \alpha_n < \infty \) and \(\sum_{n=1}^{\infty} \gamma_n < \infty \). Then, the iterative sequence \(\{x_n\} \) defined by (2.1) converges to a common fixed point of \(T_1 \) and \(T_2 \) if and only if \(\lim \inf_{n \to \infty} d(x_n, F(T_1) \cap F(T_2)) = 0 \).

Proof. The necessity is obvious, so it is omitted. We now prove the sufficiency. Assume that \(T_i : C \to X \) is an asymptotically nonexpansive nonself mapping with respect to \(\{r_i^{(n)}\} \). Let \(p \in F(T_1) \cap F(T_2) \). Note that \(T_i(PT_i)^{-1}p = p \). By assumption, we have

\[
\|y_n - p\| = \|P(\alpha_n f(x_n) + (1 - \alpha_n)(\beta_n x_n + (1 - \beta_n)T_2(PT_2)^{n-1}x_n)) - Pp\|
\]

Using the contraction property of \(f \), we have

\[
\|y_n - p\| \leq \alpha_n \|f(x_n) - p\| + (1 - \alpha_n)\beta_n \|x_n - p\| + (1 - \alpha_n)\beta_n \|x_n - p\| + (1 - \alpha_n)\|x_n - p\|
\]

Similarly, we have that

\[
\|x_{n+1} - p\| \leq (1 + r_n)\|y_n - p\| + \gamma_n \|f(p) - p\|.
\]

From this and (3.1), we have

\[
\|x_{n+1} - p\| \leq (1 + r_n)((1 + r_n)\|x_n - p\| + \alpha_n\|f(p) - p\|) + \gamma_n\|f(p) - p\|
\]

\[
\leq (1 + r_n)(1 + r_n)\|x_n - p\| + [(1 + r_n)\alpha_n + \gamma_n]\|f(p) - p\|
\]

\[
\leq (1 + r_n(2 + r_n))\|x_n - p\| + [(1 + r_n)\alpha_n + \gamma_n]\|f(p) - p\|
\]

\[
= (1 + c_n)\|x_n - p\| + b_n,
\]

where \(c_n = r_n(2 + r_n) \) and \(b_n = [(1 + r_n)\alpha_n + \gamma_n]\|f(p) - p\| \). Since \(\sum_{n=1}^{\infty} r_n < \infty \), we have that \(\{2 + r_n\} \) and \(\{1 + r_n\} \) are bounded. Thus \(\sum_{n=1}^{\infty} c_n < \infty \) and \(\sum_{n=1}^{\infty} b_n < \infty \).
Also from (3.6), we obtain
\[
\lim_{n \to \infty} \|x_n - p\| = 0.
\]
Hence Lemma 2.1 implies that \(\lim_{n \to \infty} \|x_n - p\| \) exists. Thus \(\{x_n\}\) is bounded and so are \(\{T_1(PT_2)^n x_n\}\) and \(\{f(x_n)\}\) because \(T_1\) is asymptotically nonexpansive and \(f\) is contractive. Now since \(\{x_n\}\) is bounded and from (3.1), we conclude that \(\{y_n\}\) is bounded and so are \(\{T_1(PT_1)^n y_n\}\) and \(\{f(y_n)\}\).

We next turn to another calculation for \(\|y_n - p\|\) and \(\|x_{n+1} - p\|\) as follows.

\[
\|y_n - p\| = \|P(\alpha_nf(x_n) + (1 - \alpha_n)(\beta_n x_n + (1 - \beta_n)T_2(PT_2)^n x_n)) - Pp\|
\leq \|\alpha_nf(x_n) + (1 - \alpha_n)(\beta_n x_n + (1 - \beta_n)T_2(PT_2)^n x_n) - p\|
\leq \alpha_n \|f(x_n) - T_2(PT_2)^n x_n + (1 - \alpha_n)\beta_n x_n - p\|
+ (1 - \beta_n + \alpha_n \beta_n) \|T_2(PT_2)^n x_n - p\|
\leq \alpha_n \|f(x_n) - T_2(PT_2)^n x_n + (1 - \alpha_n)\beta_n x_n - p\|
+ (1 - \beta_n + \alpha_n \beta_n) \|x_n - p\| + \alpha_n \|f(x_n) - T_2(PT_2)^n x_n - p\|
\leq (1 + r_n) \|x_n - p\| + \alpha_n \|f(x_n) - T_2(PT_2)^n x_n\|.
\] (3.3)

Similarly, we have that
\[
\|x_{n+1} - p\| \leq (1 + 2r_n) \|y_n - p\| + \gamma_n \|f(y_n) - T_1(PT_1)^n y_n\|.
\] (3.4)

Putting (3.3) in (3.4), we obtain that
\[
\|x_{n+1} - p\| \leq (1 + 2r_n) \|x_n - p\| + (1 + 2r_n) \alpha_n \|f(x_n) - T_2(PT_2)^n x_n\|
+ \gamma_n \|f(y_n) - T_1(PT_1)^n y_n\|
= (1 + d_n) \|x_n - p\| + e_n,
\] (3.5)
where \(d_n = 4r_n(1 + r_n)\) and \(e_n = (1 + 2r_n) \alpha_n \|f(x_n) - T_2(PT_2)^n x_n\| + \gamma_n \|f(y_n) - T_1(PT_1)^n y_n\|\). By the assumption that \(\sum_{n=1}^\infty r_n < \infty\), \(\sum_{n=1}^\infty \alpha_n < \infty\), \(\sum_{n=1}^\infty \gamma_n < \infty\), and \(\{T_2(PT_2)^n x_n\}, \{T_1(PT_1)^n y_n\}, \{f(x_n)\}\) and \(\{f(y_n)\}\) are bounded, we have that \(\sum_{n=1}^\infty d_n < \infty\) and \(\sum_{n=1}^\infty e_n < \infty\). Hence Lemma 2.1 tells us that \(\lim_{n \to \infty} \|x_n - p\|\) exists. Thus \(\{|x_n - p|\}\) is bounded. Let \(L = \sup_n \|x_n - p\|\). We can rewrite (3.5) as
\[
\|x_{n+1} - p\| \leq \|x_n - p\| + Ld_n + e_n \quad \text{for} \quad n \geq 1.
\] (3.6)

From this and by induction, we obtain, for \(m, n \geq 1\) and \(p \in F(T_1) \cap F(T_2)\), that
\[
\|x_{n+m} - p\| \leq \|x_n - p\| + L \sum_{i=n}^{n+m-1} d_i + \sum_{i=n}^{n+m-1} e_i.
\] (3.7)

Also from (3.6), we obtain
\[
d(x_{n+1}, F(T_1) \cap F(T_2)) \leq d(x_n, F(T_1) \cap F(T_2)) + Ld_n + e_n.
\]
But, the assumption \(\liminf_{n \to \infty} d(x_n, F(T_1) \cap F(T_2)) = 0 \) implies that there exists a subsequence of \(\{d(x_n, F(T_1) \cap F(T_2))\} \) converging to zero. From this and because \(\sum_{n=1}^{\infty} (Ld_n + e_n) < \infty \), Lemma 2.1 tells us that

\[
\lim_{n \to \infty} d(x_n, F(T_1) \cap F(T_2)) = 0.
\] (3.8)

We now show that \(\{x_n\} \) is a Cauchy sequence in \(X \). Let \(\epsilon > 0 \). From (3.8), \(\sum_{n=1}^{\infty} d_n < \infty \) and \(\sum_{n=1}^{\infty} e_n < \infty \), there exists \(n_0 \) such that, for \(n \geq n_0 \), we have

\[
d(x_n, F(T_1) \cap F(T_2)) < \epsilon/6, \sum_{i=n}^{\infty} d_i < \epsilon/(3L) \text{ and } \sum_{i=n}^{\infty} e_i < \epsilon/3.
\] (3.9)

By the first inequality in (3.9) and the definition of infimum, there exists \(p_0 \in F(T_1) \cap F(T_2) \) such that

\[
||x_{n_0} - p_0|| < \epsilon/6.
\] (3.10)

Combining (3.6), (3.9) and (3.10), we obtain

\[
||x_{n_0+m} - x_{n_0}|| \leq ||x_{n_0+m} - p_0|| + ||x_{n_0} - p_0||
\]

\[
\leq 2||x_{n_0} - p_0|| + L \sum_{i=n_0}^{n_0+m-1} d_i + \sum_{i=n_0}^{n_0+m-1} e_i
\]

\[
< \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon,
\]

which implies that \(\{x_n\} \) is a Cauchy sequence in \(X \). But \(X \) is a Banach space, so there must be some \(q \in X \) such that \(x_n \to q \). Since \(C \) is closed and \(\{x_n\} \) is a sequence in \(C \), we have that \(q \in C \). Now \(d(x_n, F(T_1) \cap F(T_2)) \to 0 \) and \(x_n \to q \) as \(n \to \infty \), the continuity of \(d(\cdot, F(T_1) \cap F(T_2)) \) implies that \(d(q, F(T_1) \cap F(T_2)) = 0 \). Thus \(q \in F(T_1) \cap F(T_2) \) because \(F(T_1) \cap F(T_2) \) is closed, by Lemma 2.2. Therefore \(\{x_n\} \) converges to a common fixed point of \(T_1 \) and \(T_2 \), as desired. \(\Box \)

If \(T_1 = T_2 = T \), then the iterative sequences (2.1) become

\[
y_n = P(\alpha_n f(x_n) + (1 - \alpha_n) \beta_n x_n + (1 - \beta_n) T(PT)^{n-1} x_n),
\]

\[
x_{n+1} = P(\gamma_n f(y_n) + (1 - \gamma_n) \delta_n y_n + (1 - \delta_n) T(PT)^{n-1} y_n), \quad n \geq 1.
\] (3.11)

We then have the following result for a fixed point of a single asymptotically nonexpansive nonself mapping.

Corollary 3.2. Let \(X \) be a real Banach space and let \(C \) be a nonempty closed convex nonexpansive retract of \(X \) with \(P \) as a nonexpansive retraction. Let \(T : X \to X \) be an asymptotically nonexpansive nonself mapping with respect to \(\{r_n\} \) such that \(F(T) \neq \emptyset \) in \(C \) and \(\sum_{n=1}^{\infty} r_n < \infty \). Let \(f : C \to C \) be a contractive mapping and let \(\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\} \) and \(\{\delta_n\} \) be real sequences in \([0,1]\) such that \(\sum_{n=1}^{\infty} \alpha_n < \infty \) and \(\sum_{n=1}^{\infty} \gamma_n < \infty \). Then, the sequence \(\{x_n\} \), defined by (3.11), converges to a fixed point of \(T \) if and only if \(\liminf_{n \to \infty} d(x_n, F(T)) = 0 \).
We also have the following results involving asymptotic regularity as in Lou et al. [6] and an auxiliary strictly increasing nonnegative function as in Ayaragnaranchakanul [10].

Corollary 3.3. Let X, C, T_i $(i = 1, 2)$ and the iterative sequence $\{x_n\}$ be as in Theorem 3.1. Suppose that the conditions in Theorem 3.1 hold and

1. the mapping T_i $(i = 1, 2)$ is asymptotically regular in x_n, i.e.,
$$\liminf_{n \to \infty} \|x_n - T_ix_n\| = 0, \quad i = 1, 2;$$
2. $\liminf_{n \to \infty} \|x_n - T_ix_n\| = 0$ implies that
$$\liminf_{n \to \infty} d(x_n, F(T_1) \cap F(T_2)) = 0.$$

Then the sequences $\{x_n\}$ converges to a common fixed point of T_1 and T_2.

Theorem 3.4. Let X, C, T_i $(i = 1, 2)$ and the iterative sequence $\{x_n\}$ be as in Theorem 3.1. Suppose that the conditions in Theorem 3.1 hold, the mapping T_i is asymptotically regular in x_n, and there exists an increasing function $g : \mathbb{R}^+ \to \mathbb{R}^+$ with $g(r) > 0$ for all $r > 0$ such that for $i = 1, 2$,
$$\|x_n - T_ix_n\| \geq g(d(x_n, F(T_1) \cap F(T_2))), \quad \forall n \geq 1.$$

Then the sequence $\{x_n\}$ converges to a common fixed point of T_1 and T_2.

Proof. To apply Theorem 3.1, we prove that $\liminf_{n \to \infty} d(x_n, F(T_1) \cap F(T_2)) = 0$. From the assumption that $\|x_n - T_ix_n\| \geq g(d(x_n, F(T_1) \cap F(T_2)))$ for $i = 1, 2$ and for all $n \geq 1$, we have
$$\frac{1}{2} \sum_{i=1}^{2} \|x_n - T_ix_n\| \geq g(d(x_n, F(T_1) \cap F(T_2))),$$
for all $n \geq 1$. Since T_i is asymptotically regular in x_n, this implies that
$$\liminf_{n \to \infty} g(d(x_n, F(T_1) \cap F(T_2))) = 0. \quad (3.12)$$

Suppose that $\liminf_{n \to \infty} d(x_n, F(T_1) \cap F(T_2)) = L > 0$. By definition of infimum, there exists an N such that
$$\inf_{n \geq m} d(x_n, F(T_1) \cap F(T_2)) - L < \frac{L}{2}, \quad \forall m \geq N.$$

Equivalently,
$$d(x_n, F(T_1) \cap F(T_2)) > \frac{L}{2}, \quad \forall n \geq m \geq N.$$
Since g is increasing, we have that
\[g(d(x_n, F(T_1) \cap F(T_2))) \geq g \left(\frac{L}{2} \right), \quad \text{for all } n \geq m \geq N. \]

This implies that
\[\liminf_{n \to \infty} g(d(x_n, F(T_1) \cap F(T_2))) \geq g \left(\frac{L}{2} \right) > 0, \]
which contradicts (3.12). Hence $\liminf_{n \to \infty} d(x_n, F(T_1) \cap F(T_2)) = 0$, as desired.

If T_i is a self-mapping, then the iterative sequences (2.1) become
\[
\begin{align*}
y_n &= \alpha_n f(x_n) + (1 - \alpha_n)(\beta_n x_n + (1 - \beta_n)T_2^n x_n), \\
x_{n+1} &= \gamma_n f(y_n) + (1 - \gamma_n)(\delta_n y_n + (1 - \delta_n)T_1^n y_n), \quad n \geq 1. \tag{3.13}
\end{align*}
\]

We have the following theorem for common fixed point of two asymptotically nonexpansive self-mappings.

Corollary 3.5. Let X be a real Banach space and let C be a nonempty closed convex subset of X. For $i = 1, 2$, let $T_i : C \to C$ be an asymptotically nonexpansive self-mapping with respect to $\{r_i^{(n)}\}$ such that $F(T_1) \cap F(T_2) \neq \emptyset$ and $\sum_{n=1}^{\infty} r_n < \infty$, where $r_n = \max\{r_1^{(n)}, r_2^{(n)}\}$. Let $f : C \to C$ be a contractive mapping and let $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ and $\{\delta_n\}$ be real sequences in $[0, 1]$ such that $\sum_{n=1}^{\infty} \alpha_n < \infty$ and $\sum_{n=1}^{\infty} \gamma_n < \infty$. Then, the iterative sequence $\{x_n\}$ defined by (3.13) converges to a common fixed point of T_1 and T_2 if and only if $\liminf_{n \to \infty} d(x_n, F(T_1) \cap F(T_2)) = 0$.

Acknowledgements: This research is partially supported by the Centre of Excellence in Mathematics, the Commission of Higher Education, Thailand. The author also owes special thanks to the referees for their generous comments and suggestions on the manuscript.

References

(Received 30 March 2011)
(Accepted 19 April 2011)