Semigroups of Full Transformations with Restriction on the Fixed Set is Bijective

Ekkachai Laysirikul

Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok, 65000, Thailand

e-mail: ekkachail@nu.ac.th

Abstract: Let $T(X)$ be the full transformation semigroup of the set X and let $S(X,Y) = \{ \alpha \in T(X) : Y\alpha \subseteq Y \}$ where Y is a nonempty subset of X. Then $S(X,Y)$ is a subsemigroup of $T(X)$. In this paper, for a fixed nonempty subset Y of X, let

$$PG_Y(X) = \{ \alpha \in T(X) : \alpha|_Y \in G(Y) \}$$

where $G(Y)$ is the permutation group on Y. Then $PG_Y(X)$ is a subsemigroup of $S(X,Y)$. Some relationships between $PG_Y(X)$ it’s subsemigroup and $S(X,Y)$ are considered. Moreover, it is shown that $PG_Y(X)$ is regular and characterizations of left regularity, right regularity, and completely regularity of elements of $PG_Y(X)$ are also described.

Keywords: transformation semigroup; regularity; left regularity; right regularity; completely regularity.

2010 Mathematics Subject Classification: 20M20; 20M17.

1 Introduction

Let X be a nonempty set and let $T(X)$ denote the semigroup of the full transformations from X into itself under composition of mappings. This semigroup is an important object in semigroup theory, combinatorics, many-valued logic, etc. It is known that $T(X)$ is a regular semigroup, that is, for every $\alpha \in T(X)$, $\alpha = \alpha \beta \alpha$
for some \(\beta \in T(X) \). For a fixed nonempty subset \(Y \) of \(X \), we denote

\[
S(X, Y) = \{ \alpha \in T(X) : Y \alpha \subseteq Y \}.
\]

Then \(S(X, Y) \) is a semigroup of full transformations on \(X \) which leave \(Y \) invariant. In 1966, Magill [1] introduced and studied this semigroup. Later, many classical notions of this semigroup have been investigated, see [2], [3] and [4].

In [3], Nenthein, Youngkhong and Kemprasit showed that \(S(X, Y) \) is regular if and only if \(X = Y \) or \(Y \) contains exactly one element.

In 1994, Umar [5] constructed a subsemigroup of \(T(X) \) as follows:

\[
F_Y(X) = \{ \alpha \in T(X) : C(\alpha) \subseteq Y = Y \alpha \text{ and } \alpha|_Y \text{ is injective} \}
\]

where

\[
C(\alpha) = \bigcup \{ ya^{-1} : y \in X \alpha \text{ and } |ya^{-1}| \geq 2 \}.
\]

\(F_Y(X) \) is called an *Umar semigroup*. He proved that \(F_Y(X) \) is a regular semigroup and considered the Green’s relations on this semigroup. It is clear that \(F_Y(X) \) is a subsemigroup of \(S(X, Y) \).

Later, Sanwong and Sommanee [6] investigated regularity and Green’s relations on a subsemigroup of \(S(X, Y) \) which defined by

\[
T(X, Y) = \{ \alpha \in T(X) : X \alpha \subseteq Y \}.
\]

Recently, a subsemigroup of \(S(X, Y) \) defined by \(F(X, Y) = \{ \alpha \in T(X, Y) : X \alpha \subseteq Y \alpha \} \) was studied by Sanwong [7].

It is the aim of the paper to introduce a new subsemigroup of \(S(X, Y) \) which is defined as follows:

\[
PG_Y(X) = \{ \alpha \in T(X) : \alpha|_Y \in G(Y) \}
\]

where \(G(Y) \) is the permutation group on a nonempty subset \(Y \) of \(X \). Some algebraic properties of \(PG_Y(X) \) are studied. For examples, \(PG_Y(X) \) is a regular semigroup, \(T(X) \) can be embeddable into \(PG_Y(Z) \) for some set \(Z \) and relationships between \(PG_Y(X) \), it’s subsemigroup and \(S(X, Y) \) are given. In the last section, left regularity, right regularity, and completely regularity of elements of \(PG_Y(X) \) are determined.

Throughout of the paper, the symbol \(\pi(\alpha) \) will denote the partition of \(X \) induced by \(\alpha \in T(X) \) namely,

\[
\pi(\alpha) = \{ ya^{-1} : y \in X \alpha \}.
\]

The set \(X \) can be finite or infinite. The cardinality of a set \(A \) is denoted by \(|A| \).
2 Preliminaries

Let X be an arbitrary set and Y a nonempty subset of X. Define a subset of $T(X)$ as follows:

$$PG_Y(X) = \{ \alpha \in T(X) : \alpha|_Y \in G(Y) \}$$

where $G(Y)$ is the permutation group on Y. Note that id_X, the identity mapping on X, belongs to $PG_Y(X)$.

Remark 2.1. We note that $PG_Y(X) = G(X)$ if $Y = X$. For arbitrary singleton subset Y of X, we obtain that $S(X, Y) = PG_Y(X)$. Moreover, if $|X| = 2$, then we have $S(X, Y) = PG_Y(X) = F_Y(X)$.

Theorem 2.2. $PG_Y(X)$ is a regular semigroup.

Proof. To prove that $PG_Y(X)$ is a subsemigroup of $T(X)$, let $\alpha, \beta \in PG_Y(X)$. Then we have $\alpha|_Y, \beta|_Y \in G(Y)$ whence $\alpha\beta|_Y \in T(Y)$. It is easy to verify that $\alpha\beta|_Y \in G(Y)$. To show $PG_Y(X)$ is regular, let $\alpha \in PG_Y(X)$. We obtain via $Y\alpha = Y$ that $X\alpha = Y \cup (X\alpha\setminus Y)$. For each $x \in Y$, there exists a unique $x' \in Y$ such that $x'\alpha = x$ since $\alpha|_Y \in G(Y)$. For $x \in X\alpha\setminus Y$, we choose $x' \in x\alpha^{-1}$. Define $\beta : X \to X$ by

$$x\beta = \begin{cases} x', & \text{if } x \in X\alpha, \\ x, & \text{otherwise}. \end{cases}$$

Obviously, $\beta|_Y : Y \to Y$ is bijective, that is $\beta \in PG_Y(X)$. Let $x \in X$. Then $x\alpha\beta\alpha = (x\alpha)\alpha = x\alpha$. This means that $\alpha = \alpha\beta\alpha$ whence $PG_Y(X)$ is a regular semigroup.

From the definition of $PG_Y(X)$ and Theorem 2.2, we conclude that $F_Y(X)$ is a subsemigroup of $PG_Y(X)$ and $PG_Y(X)$ is a subsemigroup of $S(X, Y)$. Next, the conditions under which the semigroups coincide are given.

Theorem 2.3. $F_Y(X) = PG_Y(X)$ if and only if $|X\setminus Y| \leq 1$.

Proof. Assume that $|X\setminus Y| \geq 2$. There exist $a, b \in X\setminus Y$ such that $a \neq b$. We define $\alpha : X \to X$ by

$$x\alpha = \begin{cases} a, & \text{if } x = b, \\ x, & \text{otherwise}. \end{cases}$$

We obtain that $\alpha|_Y$ is the identity mapping on Y, that is $\alpha \in PG_Y(X)$. Since $aa^{-1} = \{a, b\}$, we have $a \in C(\alpha)\alpha$ whence $C(\alpha)\alpha \not\subseteq Y$. This implies that $\alpha \not\in F_Y(X)$ and then $F_Y(X) \neq PG_Y(X)$.

Conversely, assume that $|X\setminus Y| \leq 1$. It is enough to show that $PG_Y(X) \subseteq F_Y(X)$. Let $\alpha \in PG_Y(X)$ and $x \in C(\alpha)$. Then we get $\alpha|_Y \in G(Y)$ and $x \in y\alpha^{-1}$ for some $y \in X$ and $|y\alpha^{-1}| \geq 2$. To verify that $y = x\alpha \in Y$, suppose that $y \not\in Y$. Since $Y\alpha = Y$, we have $x \not\in Y$. By the assumption, we conclude that $x = y$. This means that $y\alpha^{-1} = \{y\}$ which is a contradiction. Hence $y \in Y$ and so $C(\alpha)\alpha \subseteq Y$. It is clear that $\alpha|_Y$ is injective. Therefore $\alpha \in F_Y(X)$ whence $F_Y(X) = PG_Y(X)$.
Theorem 2.4. \(PG_Y(X) = S(X,Y) \) if and only if \(|Y| = 1 \).

Proof. Assume that \(|Y| > 1 \). Let \(a, b \in Y \) be such that \(a \neq b \) and define \(\alpha : X \to X \) by

\[
x\alpha = \begin{cases} a, & \text{if } x = b, \\ x, & \text{otherwise}. \end{cases}
\]

It is easy to verify that \(Y\alpha \subseteq Y \) and \(\alpha|_Y \) is not injective. Hence \(\alpha \in S(X,Y) \) and \(\alpha \notin PG_Y(X) \).

The converse follows from Remark 2.1.

Theorem 2.5. If \(PG_Y(X) \) is an inverse semigroup, then \(|X| \leq 1 \).

Proof. Suppose that \(|X \setminus Y| \geq 2 \). Then there exist \(a, b \in X \setminus Y \) such that \(a \neq b \). Choose \(c \in Y \) and define \(\alpha, \beta : X \to X \) by

\[
x\alpha = \begin{cases} c, & \text{if } x = b, \\ x, & \text{otherwise}, \end{cases}
\]

and

\[
x\beta = \begin{cases} a, & \text{if } x = b, \\ x, & \text{otherwise}. \end{cases}
\]

We note that \(\alpha|_Y \) and \(\beta|_Y \) are the identity mapping. Thus \(\alpha, \beta \in PG_Y(X) \).

Moreover, we obtain that \(\alpha = \alpha\beta\alpha, \beta = \beta\alpha\beta \) and \(\alpha^2 = \alpha \). Hence \(\alpha, \beta \in V(\alpha) \).

Consequently, \(PG_Y(X) \) is not an inverse semigroup.

Corollary 2.6. \(PG_Y(X) \) is an inverse semigroup if and only if \(|X| \leq 2 \) or \(Y = X \).

Proof. Assume that \(|X| > 2 \) and \(Y \neq X \). If \(|X \setminus Y| > 1 \), then we have \(PG_Y(X) \) is not an inverse semigroup by Theorem 2.5.

Suppose that \(|X \setminus Y| = 1 \). Let \(a, b \in Y \) be such that \(a \neq b \) and \(X \setminus Y = \{c\} \). Define \(\alpha, \beta : X \to X \) by

\[
x\alpha = \begin{cases} a, & \text{if } x = c, \\ x, & \text{otherwise}, \end{cases}
\]

and

\[
x\beta = \begin{cases} b, & \text{if } x = c, \\ x, & \text{otherwise}. \end{cases}
\]

Since \(\alpha|_Y, \beta|_Y \) are the identity mappings, we deduce \(\alpha, \beta \in PG_Y(X) \). Note that \(\alpha = \alpha\beta\alpha, \beta = \beta\alpha\beta \) and \(\alpha^2 = \alpha \) whence \(\alpha, \beta \in V(\alpha) \). Therefore \(PG_Y(X) \) is not an inverse semigroup.

From Remark 2.1 we obtain the converse.

Let \(P(X) \) be the partial transformation semigroup on \(X \). We note that \(T(X) \) is a subsemigroup of \(P(X) \). The following theorem shows that each full transformations semigroup can be embedded into \(PG_Y(X) \) for some set \(X \).
Theorem 2.7. Let $0 \notin X$. Then $P(X)$ is isomorphic to $PG_{(0)}(X \cup \{0\})$.

Proof. Let $\alpha \in P(X)$. Then $\text{dom}(\alpha) \subseteq X$. We let $\pi : X \cup \{0\} \to X \cup \{0\}$ be defined by

$$x\pi = \begin{cases} x\alpha, & \text{if } x \in \text{dom}(\alpha), \\ 0, & \text{otherwise.} \end{cases}$$

Obviously, $\pi_{(0)} \in G(\{0\})$ whence $\pi \in PG_{(0)}(X \cup \{0\})$. We claim that $\pi\beta = \pi\beta$ for each $\alpha, \beta \in P(X)$. Let $\alpha, \beta \in P(X)$ and $x \in X \cup \{0\}$.

Case 1. $x\pi \notin \text{dom}(\beta)$. If $x \in \text{dom}(\alpha)$ then $x\alpha \notin \text{dom}(\beta)$ which implies $x \notin \text{dom}(\alpha\beta)$. If $x \notin \text{dom}(\alpha)$ then $x \notin \text{dom}(\alpha\beta)$ since $\text{dom}(\alpha\beta) \subseteq \text{dom}(\alpha)$. Consequently, $x\pi\beta = 0 = x\alpha\beta$.

Case 2. $x\pi \in \text{dom}(\beta)$. Then $x\alpha = x\pi$ and we conclude that $x \in \text{dom}(\alpha\beta)$. Hence $x\pi\beta = x\alpha\beta = x\alpha\beta$.

These imply that $\pi\beta = \pi\beta$ for all $\alpha, \beta \in P(X)$. It follows that the mapping $\varphi : P(X) \to PG_{(0)}(X \cup \{0\})$ defined by $\alpha\varphi = \pi$ is a homomorphism.

To verify injectivity of φ, let $\alpha, \beta \in P(X)$ be such that $\pi = \beta$. Let $D = \{x \in X : x\pi \neq 0\}$. Obviously, $\text{dom}(\alpha) = D = \text{dom}(\beta)$. Moreover, we obtain that $x\alpha = x\beta$ for all $x \in D$ which implies $\alpha = \beta$. Finally, let $\beta \in PG_{(0)}(X \cup \{0\})$. Then define $\alpha \in P(X)$ by $x\alpha = x\beta$ for all $x \in \{x \in X : x\beta \neq 0\}$. Clearly, $\pi = \beta$.

Hence $P(X)$ is isomorphic to $PG_{(0)}(X \cup \{0\})$. □

Immediately, we obtain the following corollary.

Corollary 2.8. Let $0 \notin X$. Then $T(X)$ can be embedded into $PG_{(0)}(X \cup \{0\})$.

3 Regularity

Recall that an element x in a semigroup S is called left [right] regular if $x = yx^2$ $[x = x^2y]$ for some $y \in S$ and x is completely regular if $x = xyx$ and $xy = yx$ for some $y \in S$. In this section, the left regularity, right regularity, and completely regularity of elements in $PG_Y(X)$ are studied.

Theorem 3.1. Let $\alpha \in PG_Y(X)$. Then α is a right regular element if and only if $\alpha|_{X\alpha}$ is injective.

Proof. Assume that $\alpha = \alpha^2\beta$ for some $\beta \in PG_Y(X)$. Let $x, y \in X\alpha$ be such that $x\alpha = y\alpha$. Thus $x = x'\alpha$ and $y = y'\alpha$ for some $x', y' \in X$. It follows that

$$x = x'\alpha = x'\alpha^2\beta = x\alpha\beta = y\alpha\beta = y'\alpha^2\beta = y'\alpha = y.$$

Hence $\alpha|_{X\alpha}$ is injective.

Suppose that $\alpha|_{X\alpha}$ is injective. We will construct $\beta \in PG_Y(X)$ satisfying $\alpha = \alpha^2\beta$. Let $x \in X\alpha^2$. Then by the assumption, we have $x'\alpha = x$ for a unique $x' \in X\alpha$. Define $\beta : X \to X$ by

$$x\beta = \begin{cases} x', & \text{if } x \in X\alpha^2, \\ x, & \text{otherwise.} \end{cases}$$
We conclude via $\alpha|_Y \in G(Y)$ that $Y = Y\alpha = Y\alpha^2$. To verify $Y\beta = Y$, let $x \in Y$. Since $x \in Y = Y\alpha$ and by the uniqueness of x', we have $x' = y\alpha$ for some $y \in Y$ whence $x\beta = x$. On the other hand, let $y \in Y$. Since $Y = Y\alpha$, we conclude that $y\alpha \in Y\alpha^2$ and hence $(y\alpha)\beta = (y\alpha)' = y$. Thus $Y = Y\beta$. Let $x,y \in Y$ be such that $x\beta = y\beta$. Then $x,y \in Y = Y\alpha = Y\alpha^2$. By the uniqueness of x' and y', we obtain $\beta|_Y$ is injective. Hence $\beta \in PG_Y(X)$. Finally, let $x \in X$. Since $(x\alpha)\alpha = x\alpha^2$, we have $(x\alpha^2)' = x\alpha$. That is $x\alpha^2\beta = (x\alpha^2)' = x\alpha$.

Theorem 3.2. Let $\alpha \in PG_Y(X)$. Then α is a left regular element if and only if $X\alpha = X\alpha^2$.

Proof. Assume that $\alpha = \beta\alpha^2$ for some $\beta \in PG_Y(X)$. Clearly, $X\alpha^2 \subseteq X\alpha$. Let $x \in X\alpha$. Then $x = x'\alpha$ for some $x' \in X$. Hence $x = x'\alpha = x'\beta\alpha^2 \in X\alpha^2$ which implies that $X\alpha = X\alpha^2$.

Suppose that $X\alpha = X\alpha^2$. We note from $\alpha|_Y \in G(Y)$ that for each $x \in Y$, there exists a unique $x' \in Y$ such that $x'\alpha = x$ whence $x'\alpha^2 = x\alpha$. Let $x \in X\setminus Y$. Then by the assumption, we choose $x' \in X$ such that $x'\alpha^2 = x\alpha$. We construct $\beta \in PG_Y(X)$ as follows: $x\beta = x'$ for each $x \in X$. To verify $Y = Y\beta$, let $y \in Y$. By the definition of x', we deduce $x\beta = x' \in Y$. Let $y \in Y$, then $y\alpha = x$ for some $x \in Y$ since $Y\alpha = Y$. By the uniqueness of x', we conclude that $x\beta = x' = y$ which implies that $Y = Y\beta$. Assume that $x\beta = y\beta$ for some $x,y \in Y$. Then $x' = y'$ which implies $x = x'\alpha = y'\alpha = y$. Therefore $\beta|_Y \in G(Y)$. Let $x \in X$. We conclude from the definition of x' that $x\beta\alpha^2 = x'\alpha^2 = x\alpha$.

Theorem 3.3. Let $\alpha \in PG_Y(X)$. Then α is a completely regular element if and only if $|\pi(x)\cap X\alpha| = 1$ for all $x \in \pi(\alpha)$.

Proof. Assume that $\alpha = \alpha\beta\alpha$ and $\alpha\beta = \beta\alpha$ for some $\beta \in PG_Y(X)$. Let $P \in \pi(\alpha)$. Then $P = x\alpha^{-1}$ for some $x \in X\alpha$. Choose $x' \in P$, we conclude that $x = x'\alpha = x'\alpha\beta\alpha = x\beta\alpha$ which implies $x\beta \in P$. Since $x\beta = x'\alpha\beta = x'\beta\alpha \in X\alpha$, we obtain $P\cap X\alpha \neq \emptyset$. To verify $|P\cap X\alpha| = 1$, suppose that $a,b \in P\cap X\alpha$. Then $a = a'\alpha, b = b'\alpha$ for some $a', b' \in X$ and $aa = ba$. It follows that $a = a'\alpha = a'\alpha\beta\alpha = a\beta\alpha = ba\beta = b\beta\alpha = b'\alpha\beta\alpha = b'\alpha = b$.

Assume that for each $P \in \pi(\alpha), |P\cap X\alpha| = 1$. Let $P \in \pi(\alpha)$. By assumption, we denote $x_P \in P\cap X\alpha$. Let $P' = x_P\alpha^{-1}$. Then $y\alpha = x_P$ for all $y \in P'$. In particular, $x_P\alpha = x_P$. Define $\beta : X \rightarrow X$ by

$$x\beta = x_P \text{ if } x \in P \text{ for some } P \in \pi(\alpha).$$

Since $\pi(\alpha)$ is a partition of X, β is well-defined. To show that $Y\beta = Y$, let $x \in Y$. Then $x \in P$ for some $P \in \pi(\alpha)$. We note from $Y = Y\alpha$ that $x \in P\cap X\alpha$ whence $x = x_P$. Since $Y = Y\alpha$, we have $x_P = y\alpha$ for some $y \in Y$. This means that $y\alpha \in x_P\alpha^{-1} = P'$. Thus $y\alpha \in P'\cap X\alpha$ which implies $y\alpha = x_P'$. It follows that $x\beta = x_P' = x_P \in Y\alpha = Y$. Hence $Y\beta \subseteq Y$. Let $y \in Y$. Then $y = y'\alpha$ for some $y' \in Y$ since $Y = Y\alpha$. From $\pi(\alpha)$ is a partition of X, we obtain that
$y'\alpha^2 \in P$ for some $P \in \pi(\alpha)$. Since $y'\alpha^2 \in P \cap X\alpha$, we have $y'\alpha^2 = x_P$. This implies that $y'\alpha \in x_P\alpha^{-1} = P'$ whence $y'\alpha \in P' \cap X\alpha$. Thus $y'\alpha = x_{P'}$. We conclude that $y'\alpha^2\beta = x_{P'} = y'\alpha = y$ then we get $Y\beta = Y$. Next, let $x, y \in Y$ be such that $x\beta = y\beta$. By the definition of β, we have that $x \in P$, $y \in Q$ for some $P, Q \in \pi(\alpha)$ and $x\beta = x_{P'}, y\beta = x_Q$ where $x_P\alpha = x_P$ and $x_Q\alpha = x_Q$. Thus $x_P = x_{P'}\alpha = x\beta\alpha = y\beta\alpha = x_Q\alpha = x_Q$ whence $P \cap Q \neq \emptyset$. Since $\pi(\alpha)$ is a partition of X, we have $P = Q$. We note that $x, y \in Y = Y\alpha$ which implies $x = x_P = y$. Hence $\beta|_Y$ is injective and so $\beta \in PG_Y(X)$.

To verify that $\alpha = \alpha\beta\alpha$ and $\alpha\beta = \beta\alpha$, let $x \in X$. We note that $x\alpha \in P$ for a unique $P \in \pi(\alpha)$. Then we obtain that $x\alpha = x_P$. Hence $x\alpha\beta\alpha = x_P\alpha = x_P = x\alpha$. Since $x \in x_P\alpha^{-1} = P'$, we conclude that $x\beta\alpha = x_{P'}\alpha = x_{P'} = x\alpha\beta$. Therefore, α is a completely regular element.

Acknowledgements: I would like to thank the referees for their comments and suggestions on the manuscript. This work was supported by faculty of Science Naresuan University.

References

(Received 29 June 2015)
(Accepted 31 July 2016)