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Identities in Graph Algebras of
Type (n, n− 1, ..., 3, 2, 0)

T. Poomsa-ard, J. Wetweerapong, C. Khiloukom and T. Musuntei

Abstract : Graph algebras establish a connection between directed graphs with-
out multiple edges and special universal algebras of type (2,0). We say that a graph
G satisfies an identity s ≈ t if the corresponding graph algebra A(G) satisfies s ≈ t.

In this paper we generalize the concept of graph algebras of type τ = (2, 0) to
define graph algebras of type τ = (n, n−1, n−2, ..., 3, 2, 0), n ≥ 2 and characterize
identities in graph algebras. Further we show that any term over the class of all
graph algebras can be uniquely represented by a normal form term and that there
is an algorithm to construct the normal form term to every given term t.
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1 Introduction

Graph algebras have been invented in [9] to obtain examples of nonfinitely
based finite algebras. To recall this concept, let G = (V,E) be a (directed) graph
with the vertex set V and the set of edges E ⊆ V × V . Define the graph algebra
A(G) corresponding to G to have the underlying set V ∪ {∞}, where ∞ is a
symbol outside V , and two basic operations, a nullary operation pointing to ∞
and a binary one denoted by juxtaposition, given by

uv =

 u, if (u, v) ∈ E,

∞, otherwise,

where u, v ∈ V ∪ {∞},∞ /∈ V .
Graph identities were characterized in [3] by using the rooted graph of a term

t where the vertices correspond to the variables occurring in t.
In [7], R. Pöschel has shown that any term over the class of all graph algebras

of type τ = (2, 0) can be uniquely represented by a normal form term and that
there is an algorithm to construct the normal form term to every given term t.

We can generalize this concept to define graph algebras of type τ = (n, n −
1, n− 2, ..., 3, 2, 0), n ≥ 2 in the following way :
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Let G = (V,E) be a directed graph with vertex set V and set of edges E, an
edge in E is an ordered pair of (not necessarily distinct) of vertices of V . For con-
venient to define the operations on G we will partition E into Efi

such that Efi
⊆

V i, i = 2, 3, 4, ..., n, where (v1, v2, ..., vi) ∈ Efi
iff (v1, v2), (v2, v3), ..., (vi−1, vi) ∈ E

and if efi
= (v1, v2, ..., vi) ∈ Efi

and efj
= (v′1, v

′
2, ..., v

′
j) ∈ Efj

, i 6= j, then
(v1, v2), (v2, v3), ..., (vi−1, vi) of efi and (v′1, v

′
2), (v′2, v

′
3), ..., (v′i−1, v

′
j) of efj are dif-

ferent edges in E. Define the graph algebra A(G) corresponding to G with the
underlying set V ∪ {∞}, where ∞ is a symbol outside V , and n operations, a
nullary operation pointing to ∞, and i-ary operation fi, 2 ≤ i ≤ n, given for
elements of (V ∪ {∞})i by

fi(v1, v2, ...vi) =

 v1, if (v1, v2, v3, ..., vi) ∈ Efi

∞ otherwise.

We will write (v1, v2, ..., vi) instead of fi(v1, v2, ..., vi).
In this paper we will give some basic concepts and characterize identities in

graph algebras of type τ = (n, n − 1, n − 2, ..., 3, 2, 0), n ≥ 2. Further we show
that any term over the class of all graph algebras can be uniquely represented by
a normal form term and that there is an algorithm to construct the normal form
term to every given term t.

2 Basic concept

We begin with a more precise definition of terms of the type of graph algebras.

Definition 2.1 The set Wτ (X) of all terms over the alphabet

X = {x1, x2, x3, ...}

is defined inductively as follows:

(i) every variable xi, i = 1, 2, 3, ..., and ∞ are terms,

(ii) if t1, t2, ..., ti are terms, then fi(t1, t2, ..., ti) is a term, where fi is an i-ary
operation such that i = 2, 3, ..., n; instead of fi(t1, t2, ..., ti) for short we will
write (t1t2, ...ti),

(iii) Wτ (X) is the set of all terms which can be obtained from (i) and (ii) in
finitely many steps.

The leftmost variable of a term t is denoted by L(t) and rightmost variable
of a term t is denoted by R(t). A term in which the symbol ∞ occurs is called a
trivial term.

Definition 2.2 To each non-trivial term t of type τ = (n, n− 1, n− 2, ..., 3, 2, 0)
one can define a directed graph G(t) = (V (t), E(t)), where the vertex set V (t) is
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the set var(t) of all variables occurring in t and where E(t) is defined inductively
by

E(t) = φ if t is a variable and E(t1, t2, . . . , ti) = E(t1) ∪ E(t2) ∪ . . . ∪ E(ti)∪{
(L(t1), L(t2), L(t3)), . . . , L(ti))

}
, where 2 ≤ i ≤ n,

when t = (t1, t2, ..., ti) is a compound term and L(t1), L(t2), ..., L(ti) are the left-
most variables in t1, t2, ..., ti respectively.

L(t) is called the root of the graph G(t) and the pair (G(t), L(t)) is the rooted
graph corresponding to t. Formally, to every trivial term t we assign the empty
graph ∅.

Definition 2.3 We say that a graph G = (V,E) satisfies an identity s ≈ t if the
corresponding graph algebra A(G) satisfies s ≈ t (i.e. we have s = t for every
assignment V (s) ∪ V (t) → V ∪ {∞}), and in this case, we write G |= s ≈ t.

Definition 2.4 Let G = (V,E) and G
′

= (V
′
, E

′
) be graphs. A homomorphism

h from G into G
′

is a mapping h : V → V
′

carrying edges to edges, that is, for
which (v1, v2, ..., vi) ∈ Efi implies (h(v1), h(v2), ..., h(vi)) ∈ E

′

fi
.

In [3], it was proved :

Proposition 2.1 Let G = (V,E) be a graph and let h : X −→ V ∪ {∞} be an
evaluation of the variables. Consider the canonical extension of h to the set of
all terms. Then there holds: if t is a trivial term, then h(t) = ∞. Otherwise, if
h : G(t) −→ G is a homomorphism of graphs, then h(t) = h(L(t)), and if h is not
a homomorphism of graphs, then h(t) = ∞.

Further it was proved :

Proposition 2.2 Let s and t be non-trivial terms from Wτ (X) with variables
V (s) = V (t) = {x0, x1, ..., xn} and L(s) = L(t). Then a graph G = (V,E) satisfies
s ≈ t if and only if the graph algebra A(G) has the following property: A mapping
h : V (s) −→ V is a homomorphism from G(s) into G iff it is a homomorphism
from G(t) into G.

In [3] was proved above two propositions in the case s, t ∈ Wτ (X), τ = (2, 0).
We will show that these two propositions still true in the case s, t ∈ Wτ (X), τ =
(n, n− 1, n− 2, ..., 3, 2, 0), n ≥ 2.

Proposition 2.3 Let G = (V,E) be a graph and let h : X ∪ {∞} −→ V ∪ {∞}
such that h(∞) = ∞ be an evaluation of the variables. Consider the canonical
extension of h to the set of all terms. Then there holds: if t ∈ Wτ (X), τ =
(n, n − 1, n − 2, ..., 3, 2, 0), n ≥ 2 is a trivial term or there exists a variable x
in t such that h(x) = ∞, then h(t) = ∞. Otherwise, if h : G(t) −→ G is a
homomorphism of graphs, then h(t) = h(L(t)), and if h is not a homomorphism
of graphs, then h(t) = ∞.
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Proof. Let t ∈ Wτ (X). We will prove by induction on the complexity of term.
Suppose that t is a trivial term. We want to prove that h(t) = ∞. Let t = ∞.

Clearly, h(t) = ∞. Let t = (t1, t2, ..., ti) where t1, t2, ..., ti are terms and fulfil the
equation which we want to prove. Since t is a trivial term. Then there exists
tj , 1 ≤ j ≤ ni such that tj is a trivial term. By assumption h(tj) = ∞. We see
that h(t) = fi(h(t1), h(t2), ..., h(ti)) = ∞.

Let t be a non-trivial term. Suppose that there exists a variable x in t such
that h(x) = ∞. Let t = xj , xj ∈ X, clearly if h(xj) = ∞, then h(t) = ∞. Let t =
(t1, t2, ..., ti) where t1, t2, ..., ti are non-trivial terms and fulfil the equation which
we want to prove. If there exists a variable x in tj such that h(x) = ∞, then by
assumption we have h(tj) = ∞. We see that h(t) = fi(h(t1), h(t2), ..., h(ti)) = ∞.

Suppose that h(x) 6= ∞ for all variables x in t and h is a homomorphism
from G(t) into G. Let t = (u1, u2, ..., ui) where u1, u2, ..., ui ∈ X. We see that
h(t) = fi(h(u1), h(u2), ..., h(ui)). Since (u1, u2, u3, ..., ui) ∈ Efi

of E(t). We have
(h(u1), (h(u2)), h(u3), ..., h(ui)) ∈ Efi

of E. Hence h(t) = h(u1) = h(L(t)). Let
t = (t1, t2, ..., ti) where t1, t2, ..., ti are non-trivial terms and fulfil the equation
which we want to prove. We see that

h(t) = fi(h(t1), h(t2), ..., h(ti)) = fi(h(L(t1)), h(L(t2)), ..., h(L(ti))).

Since (L(t1), L(t2), L(t3), ..., L(ti)) ∈ Efi
of E(t), so we have

(h(L(t1)), h(L(t2)), h(L(t3)), ..., h(L(ti))) ∈ Efi

of E. Therefore h(t) = h(L(t1)) = h(L(t)). Suppose h is not a homomor-
phism of graphs. Let t = (u1, u2, ..., ui), where u1, u2, ..., ui ∈ X. We have
h(t) = fi(h(u1), h(u2), ..., h(ui)). Since {(u1, u2), (u2, u3), ..., (ui−1, ui)} = E(t)
and h is not a homomorphism of graph. Then (h(u1), h(u2), ..., h(ui)) /∈ Efi .
Therefore h(t) = ∞. Let t = (t1, t2, ..., ti) where t1, t2, ..., ti are non-trivial
terms and fulfil the equation which we want to prove. We see that h(t) =
fi(h(t1), h(t2), ..., h(ti)). Since for each j = 1, 2, 3, ..., i, h(tj) = h(L(tj)), if the
restriction of h on V (tj) is a homomorphism and h(tj) = ∞, if the restriction
of h on V (tj) is not a homomorphism. Then h(t) = ∞, if there exists j such
that the restriction of h on V (tj) is not a homomorphism. Suppose that the
restriction of h on V (tj) are the homomorphisms for all j = 1, 2, 3, ..., i. We
have h(t) = fi(h(L(t1)), h(L(t2)), ..., h(L(ti))). Since h is not a homomorphism of
graph. We get that (h(L(t1)), h(L(t2)), ..., h(L(ti))) /∈ Efi

of E. Thus h(t) = ∞.
�

Proposition 2.4 Let s and t be non-trivial terms from Wτ (X), τ = (n, n −
1, ..., 3, 2, 0), n ≥ 2 with variables V (s) = V (t) = {x0, x1, ..., xn} and L(s) = L(t).
Then a graph G = (V,E) satisfies s ≈ t if and only if the graph algebra A(G) has
the following property: A mapping h : V (s) −→ V is a homomorphism from G(s)
into G iff it is a homomorphism from G(t) into G.

Proof. Suppose that a graph G = (V,E) satisfies s ≈ t and let h be a restriction
of an evaluation of variables. Suppose that h is a homomorphism from G(s) into
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G but h is not a homomorphism from G(t) into G. By Proposition 2.3, we have
h(s) = h(L(s)) and h(t) = ∞ which contradicts to the assumption. By the same
way, we can prove that if h is a homomorphism from G(t) into G, then h is a
homomorphism from G(s) into G.

Conversely, suppose that h is a homomorphism from G(s) into G iff h is a
homomorphism from G(t) into G. Let G = (V,E) be a graph and let h

′
: V (t) →

V be a restriction of an evaluation of variables. If h
′

is not a homomorphism,
then by assumption and Proposition 2.3, we have h

′
(s) = ∞ = h

′
(t). If h

′
is a

homomorphism, then by assumption and Proposition 2.3 again, we get h
′
(s) =

h(L(s)) = h(L(t)) = h
′
(t). Hence A(G) satisfies s ≈ t. �

3 Identities in Graph Algebras

Proposition 2.4 gives a method to check whether a graph G = (V,E) satisfies
the equation s ≈ t. We will use this proposition to characterize graph identities.
Let G = (V,E) be a graph and A(G) be a graph algebra of type τ = (2, 0). Graph
identities were characterized in [3] by the following proposition:

Proposition 3.1 A non-trivial equation s ≈ t is an identity in the class of all
graph algebras iff either both terms s and t are trivial or none of them is trivial,
G(s) = G(t) and L(s) = L(t).

Now we will extend this proposition to the case A(G) is a graph algebras of
type τ = (n, n− 1, ..., 3, 2, 0), n ≥ 2.

Proposition 3.2 Let s, t ∈ Wτ (X), τ = (n, n−1, ..., 3, 2, 0), n ≥ 2 be terms. Then
the non-trivial equation s ≈ t is an identity in the class of all graph algebras iff
either both terms s and t are trivial or none of them is trivial, G(s) = G(t) and
L(s) = L(t).

Proof. Suppose that the non-trivial equation s ≈ t is an identity in the class
of all graph algebras. Let s be a trivial term. Suppose that t is not a trivial
term. Consider the graph G = (V,E) such that G = G(t) and h : V (t) → V is a
restriction of an identity evaluation function of variables. By Proposition 2.3, we
have h(s) = ∞ 6= L(t) = h(L(t)) = h(t), contradict to the assumption.

Suppose that s and t are non-trivial terms. By the assumption and choose G
is a complete graph, we can prove that V (s) = V (t) and L(s) = L(t). Now we
want to show that E(s) = E(t). Let (x1, x2, ..., xi) ∈ Efi

of E(s). Suppose that
(x1, x2, ..., xi) /∈ Efi of E(t). Consider the graph G = (V,E) such that G = G(t)
and h : V (t) → V is a restriction of an identity evaluation function of variables.
We see that h is a homomorphism from G(t) into G but h is not a homomorphism
from G(s) into G. By Proposition 2.4, we get that A(G) is not satisfied s ≈ t which
contradict the assumption. Hence (x1, x2, ..., xi) ∈ Efi

of E(t). By the same way,
we can prove that if (x1, x2, ..., xi) ∈ Efi

of E(t), then (x1, x2, ..., xi) ∈ Efi
of

E(s). Hence E(s) = E(t).
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Conversely, let G be a graph and let h be a restriction of an evaluation of
variables. Suppose that s and t are both trivial terms. By Proposition 2.3, we
have h(s) = ∞ = h(t). Now suppose that s and t are both non-trivial terms and
G(s) = G(t), L(s) = L(t). Then by Proposition 2.3, we see that h(s) = h(L(s)) =
h(L(t)) = h(t), if h is a homomorphism of graph and h(s) = ∞ = h(t), if h is not
a homomorphism of graph. Hence A(G) satisfies s ≈ t. �

4 Normal form terms

In [7] it was shown that any non-trivial term t over the class of all graph
algebras of type τ = (2, 0) has a uniquely determined normal form term NF (t)
and there is an algorithm to construct the normal form term to a given term t in
the following way. Let t be a non-trivial term. The normal form term of t is the
term NF (t) constructed by the following algorithm :

(i) Construct G(t) = (V (t), E(t)).

(ii) Construct for every x ∈ V (t) the list lx = (xi1 , ..., xik(x)) of all out-neighbors
(i.e. (x, xij ) ∈ E(t), 1 ≤ j ≤ k(x)) ordered by increasing indices i1 ≤ ... ≤
ik(x) and let sx be the term (...((xxi1)xi2)...xik(x)).

(iii) Starting with x := L(t), Z := V (t), s := L(t), choose the variable xi ∈
Z ∩ V (s) with the least index i, substitute the first occurrence of xi by
the term sxi

, denote the resulting term again by s and put Z := Z \ {xi}.
While Z 6= φ continue this procedure. The resulting term is the normal
form NF (t).

The algorithm stops after a finite number of steps, since G(t) is a rooted graph.
Without difficulties one shows G(NF (t)) = G(t), L(NF (t)) = L(t).

Next we will show that any non-trivial term t over the class of all graph
algebras of type τ = (n, n− 1, ..., 3, 2, 0), n ≥ 2 has a uniquely determined normal
form term NF (t) and there is an algorithm to construct the normal form term to
a given term t. Now we want to describe how to construct the normal form term.
Before to do this we will ordered the elements in Efi

, i = 2, ..., n in the following
way: (xk1 , xk2 , ..., xki

) < (xk′
1
, xk′

2
, ..., xk′

i
) iff k1 < k′1 or k1 = k′1, k2 < k′2 or k1 =

k′1, k2 = k′2, k3 < k′3 or ... or k1 = k′1, k2 = k′2, k3 = k′3, ..., ki−1 = k′i−1, ki < k′i. Let
t be a non-trivial term. The normal form term of t is the term NF (t) constructed
by the following algorithm :

(i) Construct G(t) = (V (t), E(t)).

(ii) Construct for every x ∈ V (t) the list

lix = ((xi
1p1

, xi
2p1

, ..., xi
(i−1)p1

), ..., (xi
1pki(x)

, xi
2pki(x)

, ..., xi
(i−1)pki(x)

))

such that (x, xi
1pj

, xi
2pj

, ..., xi
(i−1)pj

) ∈ Efi
of E(t), 1 ≤ j ≤ ki(x) ordered by

increasing i = 2, 3, ..., n and let sx be the term

((...((...((...((...((((...((x, x2
1p1

), x2
1p2

), ...), x2
1pk2(x)

), x3
1p1

, x3
2p1

), x3
1p2

, x3
2p2

), ...),
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x3
1pk3(x)

, x3
2pk3(x)

), ...), xn
1p1

, xn
2p1

, ..., xn
(n−1)p1

), ...), xn
1pkn(x)

, ..., xn
(n−1)pkn(x)

).

(iii) Starting with x := L(t), Z := V (t), s := L(t), choose the variable xi ∈
Z ∩ V (s) with the least index i, substitute the first occurrence of xi by
the term sxi , denote the resulting term again by s and put Z := Z \ {xi}.
While Z 6= φ continue this procedure. The resulting term is the normal
form NF (t).

The algorithm stops after a finite number of steps, since G(t) is a rooted graph.

Example 4.1 Let t = ((x1, (x3, x2)), (x4, (x2, x1)), (x3, x4)). Find NF (t)
G(t) = (V (t), E(t)), L(t) = x1 where V (t) = {x1, x2, x3, x4}, and
E(t) = {(x1, x3), (x1, x4), (x2, x1), (x3, x2), (x3, x4), (x4, x2), (x4, x3)}.

G(t) u

u

u

u�
�

�
�

���

@
@

@
@

@@R

@
@

@
@

@@R

�
�

�
�

���

�

�

�

x1

x4

x3

x2

Ef2(t) = {(x1, x3), (x2, x1), (x3, x2), (x3, x4), (x4, x2)},
Ef3(t) = {(x1, x4, x3)}
l2x1

= (x3), l2x2
= (x1), l2x3

= (x2, x4), l2x4
= (x2),

l3x1
= ((x4, x3)), l3x2

= φ, l3x3
= φ, l3x4

= φ,
sx1 = ((x1, x3), x4, x3), sx2 = (x2, x1), sx3 = ((x3, x2), x4), sx4 = (x4, x2).
NF (t) = ((x1, ((x3, (x2, x1)), (x4, x2))), x4, x3).

Next we will prove that for any non-trivial term t, G(t) = G(NF (t)), L(t) =
L(NF (t)) by the following proposition:

Proposition 4.1 Let t be any term in Wτ (X), τ = (n, n − 1, ..., 3.2, 0), n ≥ 2.
Then G(t) = G(NF (t)) and L(t) = L(NF (t)).

Proof. Clearly, L(NF (t)) = L(t), V (NF (t)) ⊆ V (t) and E(NF (t)) ⊆ E(t). Since
for any x ∈ V (t), x ∈ V (sx′) for some x′ ∈ V (t) and V (NF (t)) =

⋃
x∈V (t) V (sx).

Then V (t) = V (NF (t)). Suppose that (x, y) ∈ E(t). Then (x, y) ∈ E(sx′) for
some x′ ∈ V (t). Since E(NF (t)) =

⋃
x∈V (t) E(sx). Hence E(t) = E(NF (t)). �
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