Finding the Number of Cycle Egamorphisms

P. Sirisathianwatthana and N. Pipattanajinda

A mapping \(f \) from graph \(G \) to graph \(H \) is called an egamorphism (or weak homomorphism, contraction) from \(G \) to \(H \), if \(f \) preserves or contracts the edges. This paper is to find the number of egamorphism from \(C_m \) to \(C_n \), where \(m, n \in \mathbb{Z}^+ \) and \(m, n > 2 \).

Keywords: Egamorphism, Weak homomorphism, Contraction, Cycle

2010 Mathematics Subject Classification: 05C38; 68R05

1 Introduction and Preliminaries

The motivation of this paper is come from the determination of number of cycle homomorphisms [8]. Otherwise the number of path homomorphisms [3] and the number of endomorphisms [2]. In [7] using the congruence classes to fine the number of path and cycle endomorphisms.

As usual we denote by \(V(G) \) and \(E(G) \) the vertex set and the edge set of the graph \(G \), respectively, where \(V(G) \neq \emptyset \) and \(E(G) \subseteq \{ \{ u, v \} \mid u \neq v \text{ in } V(G) \} \). The graph with vertex set \(\{0, 1, \ldots, n\} \) and edge set \(\{\{0, 1\}, \{1, 2\}, \ldots, \{n-1, n\}\} \) is called a path of length \(n \), denoted by \(P_n \). Therefore, the path \(P_n \) has \(n + 1 \) vertices and \(n \) edges. The graph with vertex set \(\{0, 1, \ldots, n-1\} \), such that \(n \geq 3 \), and edge set \(\{\{i, i+1\} \mid i = 0, 1, \ldots, n-1\} \) (with addition modulo \(n \)) is called a cycle of length \(n \), denoted by \(C_n \). Therefore, the cycle \(C_n \) has \(n \) vertices and \(n \) edges.

A homomorphism of a graph \(G \) to a graph \(H \) is a mapping \(f : V(G) \to V(H) \) which preserves edges, i.e. \(\{u, v\} \in E(G) \) implies \(\{f(u), f(v)\} \in E(H) \). A homomorphism from \(G \) to itself is called an endomorphism of \(G \). By \(\text{Hom}(G, H) \) and \(\text{End}(G) \) we denote the set of all homomorphisms.
from G to H and endomorphism of G, respectively. For each bijective $f \in \text{End}(G)$, if $f^{-1} \in \text{End}(G)$, f said to be \textit{automorphism}, denoted by $\text{Aut}(G)$.

From [6], if G and H are two graphs, a map $f : V(G) \rightarrow V(H)$ is an \textit{egamorphism} if f preserves or contracts the edges, i.e., if $f(x) = f(y)$ or $\{f(x), f(y)\} \in E(H)$ whenever $\{x, y\} \in E(G)$ (f is also \textit{weak homomorphism} in [5] and \textit{contraction} in [9]). By $\text{Ega}(G, H)$ and $\text{Ega}(G)$ we denote the set of all egamorphisms from G to H and egamorphisms from G to itself, respectively.

We now define notation about the set which will be used in later. For any given $m, n \in \mathbb{Z}^+ \cup \{0\}$ and $i, j, k \in C_n$. Let $\text{Ega}^i(P_m, C_n)$ be the set of all egamorphisms and maps f from P_m to C_n such that $f(0) = i$. Let $\text{Ega}^j(P_m, C_n)$ be the set of all egamorphisms and maps f from P_m to C_n such that $f(0) = i$ and $f(m) = j$. So the set of all egamorphisms from P_m to C_n can be written as $\text{Ega}(P_m, C_n)$. Similarly, if $\text{Ega}^i(C_m, C_n)$ is the set of all egamorphisms and maps f from C_m to C_n such that $f(0) = i$, and $\text{Ega}^j(C_m, C_n)$ is the set of all egamorphisms and maps f from C_m to C_n such that $f(0) = i$ and $f(m - 1) = j$. And easy to prove that,

\textbf{Proposition 1.1.} For any given path P_m and cycle C_n. Then, the following properties are also held.

1. If $j \neq k$, then $\text{Ega}^i_k(P_m, C_n) \cap \text{Ega}^j_k(P_m, C_n) = \emptyset$ and $\text{Ega}^i_k(C_m, C_n) \cap \text{Ega}^j_k(C_m, C_n) = \emptyset$

2. If $i \neq r$, then $\text{Ega}^i(P_m, C_n) \cap \text{Ega}^r(P_m, C_n) = \emptyset$ and $\text{Ega}^i(C_m, C_n) \cap \text{Ega}^r(C_m, C_n) = \emptyset$,

3. $|\text{Ega}^i(P_m, C_n)| = \sum_{j=0}^{n-1} |\text{Ega}^j(P_m, C_n)|$,

4. $|\text{Ega}^i(C_m, C_n)| = \sum_{j=0}^{n-1} |\text{Ega}^j(C_m, C_n)|$,

5. $|\text{Ega}(P_m, C_n)| = \sum_{i=0}^{n-1} |\text{Ega}^i(P_m, C_n)|$,

6. $|\text{Ega}(C_m, C_n)| = \sum_{i=0}^{n-1} |\text{Ega}^i(C_m, C_n)|$.

From [1], trinomial coefficients are used as major tools for our results, so its outline are introduced in brief here. For any given $m \in \mathbb{Z}^+ \cup \{0\}$, $k \in \mathbb{Z}$,
Finding the Number of Cycle Egamorphisms

defined
\[
\binom{m}{k}_2 = \begin{cases} \sum_{j=0}^{m} (-1)^j \binom{m}{j} \binom{2m-2j}{m-k-j}, & -m \leq k \leq m; \\ 0, & \text{otherwise}. \end{cases}
\]

From the definition, it can be written in factorial forms
\[
\binom{m}{k}_2 = \binom{m-1}{k-1}_2 + \binom{m-1}{k}_2 + \binom{m-1}{k+1}_2
\]
we now properly suggested next lemma for utilizing to prove our results.

Lemma 1.2. Let \(m, q \in \mathbb{Z}^+ \cup \{0\} \), for any given positive integer \(n \) such that \(m = nq \). Then
\[
\binom{m}{j - i + n(q + 1)}_2 = \binom{m}{j - i - n(q + 1)}_2 = 0,
\]
for all \(0 \leq i, j \leq n - 1 \).

2 The Number of Egamorphisms from Paths to Cycles

First, we will show how to find the number of egamorphisms from paths to cycles. They are the important tools to determine the number of cycle egamorphisms. It’s easy to get that,

Lemma 2.1. Let \(G, H \) be graphs, \(u \in V(G) \) and \(v_1, v_2 \in V(H) \). If there exists \(\alpha \in \text{Aut}(H) \) such that \(\alpha(v_1) = v_2 \), then \(|Ega_{u \rightarrow v_1}(G, H)| = |Ega_{u \rightarrow v_2}(G, H)|\).

Lemma 2.2. Let \(G \) be a graph and \(a, b \in V(G) \). If there exists \(\varphi \in \text{Aut}(G) \) such that \(\varphi(a) = b \), then \(|Ega^a(P_m, G)| = |Ega^b(P_m, G)|\) and \(|Ega^a(P_m, G)| = |Ega^b(P_m, G)|\) for all \(v \in V(G) \).

Corollary 2.3. For any given path \(P_m \) and cycle \(C_n \). Then \(|Ega^i(P_m, C_n)| = |Ega^j(P_m, C_n)|\) and \(|Ega^i(P_m, G)| = |Ega^j(P_m, G)|\) for all \(v \in V(G) \).

Theorem 2.4. Let \(G \) be a graph and \(m \) be a positive integer, then
\[
|Ega^i_j(P_m, G)| = \sum_{\{j, j'\} \in E(G)} |Ega^i_j(P_{m-1}, G)| + |Ega^i_j(P_{m-1}, G)|, \text{ where } j \neq j'.
\]
Proof. Let \(m, n \in \mathbb{Z}^+ \), \(n \geq 3 \) and \(i \in V(G) \).
Define \(\varphi : Ega_j^i(P_m, G) \rightarrow \bigcup_{\{j,j'\} \in E(G)} Ega_{j'}^i(P_{m-1}, G) \cup Ega_j^i(P_{m-1}, G) \), where \(j \neq j' \), by \(f \in Ega_j^i(P_m, G) \), then \(\varphi(f) = f|_{\{0,1,2,\ldots,m-1\}} = f' \).

Clearly, \(f' \in \bigcup_{\{j,j'\} \in E(G)} Ega_{j'}^i(P_{m-1}, G) \cup Ega_j^i(P_{m-1}, G) \), where \(j \neq j' \).

(i) We have to show that \(\varphi \) is injective.
Let \(f_1, f_2 \in Ega_j^i(P_m, G) \) such that \(\varphi(f_1) = \varphi(f_2) \).
Then \(f_1(x) = f_1'(x) = f_2'(x) = f_2(x) \) for all \(x \in P_{m-1} \).
But \(f_1, f_2 \in Ega_j^i(P_m, G) \), \(f_1(m) = f_2(m) = j \).
Therefore \(f_1 = f_2 \).

(ii) We want to show that \(\varphi \) surjective.
Let \(g \in \bigcup_{\{j,j'\} \in E(G)} Ega_{j'}^i(P_{m-1}, G) \cup Ega_j^i(P_{m-1}, G) \), where \(j \neq j' \).

If \(g \in \bigcup_{\{j,j'\} \in E(G)} Ega_{j'}^i(P_{m-1}, G) \), where \(j \neq j' \), \(g(0) = i \) and \(g(m-1) = j' \).

\(\exists f \in Ega_j^i(P_m, G) \) such that \(f(x) = g(x) \) for all \(0 \leq x \leq m-1 \) and \(f(m) = j \).
If \(g \in Ega_j^i(P_{m-1}, G) \), \(g(0) = i \) and \(g(m-1) = j \).

\(\exists f \in Ega_j^i(P_m, G) \) such that \(f(x) = g(x) \) for all \(0 \leq x \leq m-1 \) and \(f(m) = j \).

By (i) and (ii) we get that \(|Ega_j^i(P_m, G)| = \sum_{\{j,j'\} \in E(G)} Ega_{j'}^i(P_{m-1}, G) + Ega_j^i(P_{m-1}, G) \), where \(j \neq j' \).

By Theorem 2.4, we get one result as follow.

Corollary 2.5. For any \(m, n \in \mathbb{Z}^+ \), \(n \geq 3 \), \(i, j \in V(C_n) \), then

\[
|Ega_j^i(P_m, C_n)| = \begin{cases}
\sum_{j' = 0, \ldots, n-1} |Ega_{j'}^i(P_{m-1}, C_n)|, & j = 0; \\
\sum_{j' = j-1, \ldots, j+1} |Ega_{j'}^i(P_{m-1}, C_n)|, & 0 < j < n-1; \\
|Ega_j^i(P_{m-1}, C_n)|, & j = n-1.
\end{cases}
\]

We will suggest an important lemma for proving theorem of finding the number of egamorphisms.

Lemma 2.6. For all \(n \in \mathbb{Z}^+ \), \(n \geq 3 \), \(i, j \in V(C_n) \), \(|Ega_j^i(P_0, C_n)| = \begin{cases} 1, & i = j; \\
0, & i \neq j.
\end{cases} \)
By definition of egamorphism, we then obvious the proof of this lemma. By Corollary 2.5 and Lemma 2.6. These pretty results are useful for using to calculate the number of egamorphisms. The next corollary is given the number of egamorphisms from paths to cycles.

Corollary 2.7. For any \(m \in \mathbb{Z}^+ \cup \{0\} \), \(n \in \mathbb{Z}^+ \) and \(n \geq 3 \). Then \(|Ega^i(P_m, C_n)| = 3^m|\), for all \(i \in V(C_n) \) and \(|Ega(P_m, C_n)| = n3^m|\).

Proof. Let \(m \in \mathbb{Z}^+ \cup \{0\} \), \(n \in \mathbb{Z}^+ \), \(n \geq 3 \) and \(i \in C_n \).

We will show that \(|Ega^i(P_m, C_n)| = 3^m|\).

If \(m = 0 \), then

\(|Ega^i(P_0, C_n)| = 0\), if \(i \neq j \) and \(|Ega^i(P_0, C_n)| = 1\), if \(i = j \).

Then \(|Ega^i(P_0, C_n)| = \sum_{j=0}^{n-1} |Ega^j(P_0, C_n)| = 1 = 3^0|.

Therefore \(|Ega^i(P_0, C_n)| = 3^0|.

Assume \(|Ega^i(P_k, C_n)| = 3^k|\) at \(k \in \mathbb{Z}^+ \cup \{0\} \), \(i \in V(C_n) \).

We will show that \(|Ega^i(P_{k+1}, C_n)| = 3^{k+1}|.

Using the fact that \(|Ega^i(P_{k+1}, C_n)| = \sum_{j=0}^{n-1} |Ega^j(P_{k+1}, C_n)|\), we have

\(|Ega^i(P_{k+1}, C_n)| = |Ega^i(P_{k+1}, C_n)| + \sum_{j=0}^{n-1} |Ega^j(P_{k+1}, C_n)| = 3|Ega^i(P_k, C_n)| + \sum_{j=0}^{n-1} |Ega^j(P_{k+1}, C_n)| + \sum_{j=0}^{n-1} |Ega^j(P_{k+1}, C_n)|.

\(|Ega^i(P_{k+1}, C_n)| = 3^k|.

Thus \(|Ega^i(P_m, C_n)| = 3^m|\) for all \(m \in \mathbb{Z}^+ \cup \{0\} \) and \(i \in V(C_n) \).

Therefore \(|Ega(P_m, C_n)| = n3^m|\) for all \(m \in \mathbb{Z}^+ \cup \{0\} \).

The next is our main result which is generated by trinomial coefficients. It can be written as the following formula.

Theorem 2.8. Let \(m \in \mathbb{Z}^+ \cup \{0\} \), \(n \in \mathbb{Z}^+ \), \(n \geq 3 \) and \(i, j \in V(C_n) \). Then

\(|Ega^j(P_m, C_n)| = \sum_{t=0}^{q+1} \binom{m}{j - i \pm nt},

where \(m = nq + r \), for some \(q \in \mathbb{Z}^+ \cup \{0\} \), \(0 \leq r \leq n - 1 \).

Proof. Let \(P(m) : |Ega^j(P_m, C_n)| = \sum_{t=0}^{q+1} \binom{m}{j - i \pm nt}, \) where \(m = nq + r \), for some \(q \in \mathbb{Z}^+ \cup \{0\} \), \(0 \leq r \leq n - 1 \).
If \(m = 0 \), then \(q = 0, r = 0 \)

(i) If \(j = i \) \((j - i = 0)\), then \(|Ega_j^0(P_0, C_n)| = 1 = (0_{-n})_2 + (0_0)_2 + (0_{+n})_2 = q^+_{+1} = \sum_{t=0}^{q^+_{+1}} (j_{-i+nt})_2^t\).

(ii) If \(j \neq i \) \((j - i \neq 0)\), then \(|Ega_j^0(P_0, C_n)| = 0 = (j_{-i-n})_2 + (j_{-i})_2 + (j_{-i+n})_2 = q^+_{+1} = \sum_{t=0}^{q^+_{+1}} (j_{-i+nt})_2^t\) (because \(-n < j - i < n\)).

By (i) and (ii) therefore \(P(0)\) is true for all \(i, j \in V(C_n)\).

Assume that \(P(k)\) is true for some \(k \in \mathbb{Z}^+ \cup \{0\}\),

therefore \(|Ega_j^i(P_k, C_n)| = \sum_{t=0}^{q^+_{+1}} (j_{-i+nt})_2^t\), for all \(i, j \in V(C_n)\),

where \(k = nq + r\), for some \(q \in \mathbb{Z}^+ \cup \{0\}\), \(0 \leq r \leq n - 1\).

We want to show that \(P(k + 1)\) is true. Since \(k = nq + r\), then \(k + 1 = nq + r + 1\).

Case 1: If \(0 \leq r \leq n - 2\), then \(k + 1 = nq + r + 1\) where \(0 \leq r + 1 \leq n - 1\).

Let \(j \in V(C_n)\) such that \(0 < j < n - 1\). Then

\[
|Ega_j^i(P_k+1, C_n)| = |Ega_j^{i-1}(P_k, C_n)| + |Ega_j^i(P_k, C_n)| + |Ega_j^{i+1}(P_k, C_n)|,
\]

\[
= \sum_{t=0}^{q^+_{+1}} (j_{-i+nt})_2^t + \sum_{t=0}^{q^+_{+1}} (j_{-i+nt})_2^t + \sum_{t=0}^{q^+_{+1}} (j_{-i+nt+1})_2^t,
\]

\[
= \sum_{t=0}^{q^+_{+1}} (j_{-i+nt})_2^t + (j_{-i+nt})_2^t + (j_{-i+nt+1})_2^t,
\]

\[
= \sum_{t=0}^{q^+_{+1}} (j_{-i+nt})_2^t.
\]

By Lemma 2.2, \(|Ega_j^i(P_k+1, C_n)| = |Ega_j^i(P_k+1, C_n)| = |Ega_j^{n-1}(P_k+1, C_n)|\).

Therefore, \(|Ega_j^i(P_k+1, C_n)| = \sum_{t=0}^{q^+_{+1}} (j_{-i+nt})_2^t\), for all \(i, j \in V(C_n)\), in the case of \(k = nq + r\), \(0 \leq r \leq n - 2\).

Case 2: If \(r = n - 1\), then \(k + 1 = n(q + 1)\).

Let \(j \in V(C_n)\) such that \(0 < j < n - 1\). Similarly to **Case 1**, we get

that \(|Ega_j^i(P_k+1, C_n)| = \sum_{t=0}^{q^+_{+1}} (j_{-i+nt})_2^t\). From Lemma 1.2, \(|Ega_j^i(P_k+1, C_n)| = \sum_{t=0}^{q^+_{+1}} (j_{-i+nt})_2^t\).

Thus \(|Ega_j^i(P_k+1, C_n)| = \sum_{t=0}^{q^+_{+1}} (j_{-i+nt})_2^t\).

By Lemma 2.2, \(|Ega_j^i(P_k+1, C_n)| = |Ega_j^i(P_k+1, C_n)| = |Ega_j^{n-1}(P_k+1, C_n)|\).

Therefore, \(|Ega_j^i(P_k+1, C_n)| = \sum_{t=0}^{q^+_{+1}} (j_{-i+nt})_2^t\), for all \(i, j \in V(C_n)\), where
Finding the Number of Cycle Egamorphisms

\[k + 1 = n(q + 1) \text{, for some } q \in \mathbb{Z}^+ \cup \{0\}. \]

By Case 1 and Case 2, we get that \(P(k+1) \) is true.

Therefore, by mathematical induction, \(|Ega_i^j(P_m, C_n)| = \sum_{t=0}^{q+1} \left(\frac{m}{j-i \pm nt} \right)^2 \), for all \(m \in \mathbb{Z}^+ \cup \{0\} \), \(n \in \mathbb{Z}^+ \), \(n \leq 3 \), \(i, j \in V(C_n) \), where \(m = nq + r \), for some \(q \in \mathbb{Z}^+ \cup \{0\} \), \(0 \leq r \leq n - 1 \).

This result used for finding the number of the value of \(Ega_i^j(P_m, C_n) \) at \(i \) and \(j \).

3 The Number of Cycle Egamorphisms

In this section, we presented the theorem which is use to find the number of cycle egamorphisms.

Lemma 3.1. For all \(m, n \in \mathbb{Z}^+ \), \(m, n \geq 3 \) and \(i, j \in V(C_n) \), if \(|Ega_i^j(C_m, C_n)| \neq 0 \), then \(\{i, j\} \in E(C_n) \) or \(i = j \).

Lemma 3.2. For all \(m, n \in \mathbb{Z}^+ \), \(m, n \geq 3 \) and \(i, j \in V(C_n) \), if \(\{i, j\} \in E(C_n) \) or \(i = j \), then \(|Ega_i^j(P_{m-1}, C_n)| = |Ega_i^j(C_m, C_n)| \).

The proofs of two lemmas above are clear. In case of strictly for \(m, n \geq 3 \)

Theorem 3.3. Let \(m, n \in \mathbb{Z}^+ \), \(m, n \geq 3 \). If \(m - 1 = nq + r \), for some \(q \in \mathbb{Z}^+ \cup \{0\} \), \(0 \leq r \leq n - 1 \), then

\[|Ega_i^j(C_m, C_n)| = \sum_{t=0}^{q+1} \left(\frac{m}{\pm nt} \right)^2 \text{, for all } i \in V(C_n). \]

Proof. Let \(m, n \in \mathbb{Z}^+ \), \(m, n \geq 3 \) such that \(m - 1 = nq + r \), for some \(q \in \mathbb{Z}^+ \cup \{0\} \), \(0 \leq r \leq n - 1 \). Let \(i \in V(C_n) \). Thus \(|Ega_i^j(C_m, C_n)| = \sum_{j=0}^{n} |Ega_i^j(C_m, C_n)| \).

For \(0 < i < n - 1 \).

By Lemma 3.1, \(|Ega_i^j(C_m, C_n)| = 0 \) for all \(j = 0, 1, \ldots, (i - 2), (i + 2), \ldots, n \).

Thus
\[|Ega^i(C_m, C_n)| = |Ega^i_{i-1}(C_m, C_n)| + |Ega^i(C_m, C_n)| + |Ega^i_{i+1}(C_m, C_n)|, \]
\[= |Ega^i_{i-1}(P_{m-1}, C_n)| + |Ega^i(P_{m-1}, C_n)| + |Ega^i_{i+1}(P_{m-1}, C_n)|, \]
\[= \sum_{t=0}^{q+1} \left(\frac{m-1}{1 \pm nt} \right)_2 + \sum_{t=0}^{q+1} \left(\frac{m-1}{\pm nt} \right)_2 + \sum_{t=0}^{q+1} \left(\frac{m-1}{1 \pm nt} \right)_2, \]
\[= \sum_{t=0}^{q+1} \left[\left(\frac{m-1}{1 \pm nt} \right)_2 + \left(\frac{m-1}{\pm nt} \right)_2 + \left(\frac{m-1}{1 \pm nt} \right)_2 \right], \]
\[= \sum_{t=0}^{q+1} \left(\frac{m}{\pm nt} \right)_2. \]

From 2.2, \[|Ega^i(C_m, C_n)| = |Ega^0(C_m, C_n)| = |Ega^{n-1}(C_m, C_n)|. \] Altogether \[|Ega^i(C_m, C_n)| = \sum_{t=0}^{q+1} \left(\frac{m}{\pm nt} \right)_2, \] for all \(i \in V(C_n). \)

Proposition 3.4. Let \(m, n \in \mathbb{Z}^+, \ m, n \geq 3. \) If \(m - 1 = nq + r, \) for some \(q \in \mathbb{Z}^+ \cup \{0\}, \) \(0 \leq r \leq n - 1, \) then

1. \[|Ega(C_m, C_n)| = n \sum_{t=0}^{q+1} \left(\frac{m}{\pm nt} \right)_2, \]
2. \[|Ega(C_m)| = n\left(\binom{m}{0} + \frac{1}{2} \right). \]

Acknowledgement(s) : This authors would like to thanks Kamphaeng Phet Rajabhat University, Thailand.

References

Paichayon Sirisathianwatthana, Nirutt Pipattanajinda
School of Mathematics, Faculty of Sciences and Tecnology, Kamphaeng Phet Rajabhat University, Kamphaeng Phet 62000, THAILAND
e-mail: paisiri@hotmail.com, nirutt.p@gmail.com