G$_\mu$-Closed Sets and G$_m$-Closed Sets in GTMS Spaces

Tatsanee Wiangwiset, Chokchai Viriyapong1 and Butsakorn Kong-ied

Mathematics and Applied Mathematics Research Unit, Department of Mathematics, Faculty of Science, Mahasarakham University
Maha Sarakham 44150, Thailand

\textbf{Abstract :} The main purpose of this article is to introduce the concepts of G$_\mu$-closed sets and G$_m$-closed sets, which are a weak forms of closed sets in a generalized topology and minimal structure space. Some of their properties are studied. In particular, the characterizations of μ^G-closed sets and μm^G-closed sets are obtained using G$_\mu$-closed and G$_m$-closed. Moreover, the notions of GT$_1$-GTMS spaces and GT$_2$-GTMS spaces are introduced.

\textbf{Keywords :} GTMS space; G$_\mu$-closed set; G$_m$-closed set; GT$_1$-GTMS space; GT$_2$-GTMS space.

\textbf{2010 Mathematics Subject Classification :} 54A05; 54C10.

1 Introduction

Generalized topology and minimal structure, which were the generalizations of topology, were first studied by Császár [1] and Popa and Noiri [2], respectively. After that, Buadong et al. [3] introduced the concept of generalized topology and minimal structure space (briefly GTMS-space), which was a non-empty set with generalized topology and minimal structure on its. They studied closed sets,

This research has been funded by Mahasarakham University.

1Corresponding author.

Copyright © 2017 by the Mathematical Association of Thailand. All rights reserved.
open sets and weak separation axioms, which were T_1-GTMS and T_2-GTMS, in a GTMS space. Later, Zakari [4] proposed the notions of μm-closed sets, μmG-closed sets, and mG-closed sets in GTMS spaces. Moreover, lower separation axioms, which is T_{00}-GTMS and R_0-GTMS, were studied in a GTMS space. Also, μm-continuity on GTMS spaces was introduced by Zakari [5].

In this paper, we introduce the concepts of G_{μ}-closed sets and G_{m}-closed sets in a GTMS space and study some properties of such sets. Moreover, we study some separation axioms in the GTMS space using G_{μ}-open and G_{m}-open.

2 Preliminaries

In this section, we shall begin by repeating the concepts of minimal structure, see in [1] or [6]. A subcollection m of subsets of a non-empty set X is called a minimal structure (briefly, m-structure) on X if $\emptyset \in m$ and $X \in m$. Each member of m is said to be m-open and the complement of an m-open set is said to be m-closed. For a minimal structure m on X and $A \subset X$, $c_m(A) = \bigcap \{F : A \subset F$ and $X \setminus F \in m\}$ and $i_m(A) = \bigcup \{U : U \subset A$ and $U \in m\}$. Clearly, $i_m(A) \subset A \subset c_m(A)$. If $A, B \subset X$ and m is a minimal structure on X, the following properties hold:

1. $c_m(X \setminus A) = X \setminus i_m(A)$ and $i_m(X \setminus A) = X \setminus c_m(A)$.
2. If $X \setminus A \in m$, then $c_m(A) = A$ and if $A \in m$, then $i_m(A) = A$.
3. If $A \subset B$, then $c_m(A) \subset c_m(B)$ and $i_m(A) \subset i_m(B)$.
4. $c_m(c_m(A)) = c_m(A)$ and $i_m(i_m(A)) = i_m(A)$.

Moreover, if $x \in X$ and $A \subset X$, then $x \in c_m(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m$ containing x.

Next, we will recall the notions of generalized topology, see in [1] or [6]. A subfamily μ of subsets of a non-empty set X is called a generalized topology (briefly, GT) on X if $\emptyset \in \mu$ and any union of elements of μ belongs to μ. A subset A of X is called μ-open if $A \in \mu$. The complement of a μ-open set is called a μ-closed set. For a GT μ on X and $A \subset X$, $c_\mu(A)$ is the intersection of all μ-closed sets containing A, i.e., the smallest μ-closed set containing A, and $i_\mu(A)$ is the union of all μ-open sets contained in A, i.e., the largest μ-open set contained in A. Obviously, $i_\mu(A) \subset A \subset c_\mu(A)$. If $A, B \subset X$ and μ is a GT on X, then the following statements hold:

1. $c_\mu(X \setminus A) = X \setminus i_\mu(A)$ and $i_\mu(X \setminus A) = X \setminus c_\mu(A)$.
2. If $X \setminus A \in \mu$, then $c_\mu(A) = A$ and if $A \in \mu$, then $i_\mu(A) = A$.
3. If $A \subset B$, then $c_\mu(A) \subset c_\mu(B)$ and $i_\mu(A) \subset i_\mu(B)$.
4. $c_\mu(c_\mu(A)) = c_\mu(A)$ and $i_\mu(i_\mu(A)) = i_\mu(A)$.
In [7], \(x \in c_{\mu}(A) \) if and only if \(x \in V \in \mu \) implies \(V \cap A \neq \emptyset \).

Next, we will recall some concepts of GTMS spaces in [3] and [4]. A non-empty set \(X \) equipped with a GT \(\mu \) and a minimal structure \(m \) on it is called a generalized topology and minimal structure space or simply a GTMS space, is denoted by \((X, \mu, m)\). For a GTMS space \((X, \mu, m)\), a subset \(A \) of \(X \) is said to be \(\mu m \)-closed (resp. \(\mu m \)-open) \[3\] if \(c_{\mu}(c_{m}(A)) = A \) (resp. \(c_{m}(c_{\mu}(A)) = A \)). The complement of a \(\mu m \)-closed (resp. \(\mu m \)-open) set is said to be \(\mu m \)-open (resp. \(\mu m \)-closed). Then the following are equivalent:

1. \(A \) is \(\mu m \)-closed.
2. \(c_{\mu}(A) = A \) and \(c_{m}(A) = A \).
3. \(A \) is \(\mu m \)-closed.

In a GTMS space \((X, \mu, m)\), a subset \(A \) of \(X \) is said to be \(\text{closed} \) (resp. \(\text{open} \), \(\text{c-closed} \)) \[3\] if \(A \) is \(\mu m \)-closed (resp. \(\mu m \)-open, \(\mu m \)-closed). The complement of a \(\text{closed} \) (resp. \(\text{open} \), \(\text{c-closed} \)) set is said to be \(\text{open} \) (resp. \(\text{closed} \), \(\text{c-closed} \)). Clearly, \(A \) is open in a GTMS space \((X, \mu, m)\) if and only if \(i_{\mu}(A) = A \) and \(i_{m}(A) = A \). A subset \(A \) of \(X \) is said to be \(\mu m G \)-closed (resp. \(\mu m G \)-open, \(\mu m G \)-closed, \(mG \)-closed, \(\mu G \)-closed) \[4\] in a GTMS space \((X, \mu, m)\) if \(c_{\mu}(c_{m}(A)) \subseteq U \) (resp. \(c_{m}(c_{\mu}(A)) \subseteq U \), \(c_{m}(c_{\mu}(A)) \subseteq U \), \(c_{\mu}(c_{m}(A)) \subseteq U \)) whenever \(A \subseteq U \) and \(U \) is open (resp. \(U \) is open, \(U \) is \(\mu m \)-open, \(U \) is \(mG \)-closed). Also, a subset \(A \) of \(X \) is said to be \(G \)-closed (resp. \(G^* \)-closed) \[4\] in a GTMS space \((X, \mu, m)\) if \(A \) is \(\mu m G \)-closed and \(\mu m G \)-closed (resp. \(\mu G \)-closed and \(mG \)-closed).

Now, we recall some separation axioms in a GTMS space.

\textbf{Definition 2.1} \[3\]. A GTMS space \((X, \mu, m)\) is called a \textit{\(T_{0} \)-GTMS space} if for any pair of distinct points \(x \) and \(y \) in \(X \), there exist a subset \(U \) which is either \(\mu \)-open or \(m \)-open such that \(x \in U \), \(y \notin U \) or \(y \in U \), \(x \notin U \).

\textbf{Definition 2.2} \[3\]. A GTMS space \((X, \mu, m)\) is called a \textit{\(T_{1} \)-GTMS space} if for any pair of distinct points \(x \) and \(y \) in \(X \), there exist a \(\mu \)-open set \(U \) and a \(m \)-open set \(V \) such that \(x \in U \), \(y \notin U \) and \(y \in V \), \(x \notin V \).

\textbf{Definition 2.3} \[3\]. A GTMS space \((X, \mu, m)\) is called a \textit{\(T_{2} \)-GTMS space} if for any pair of distinct points \(x \) and \(y \) in \(X \), there exist a \(\mu \)-open set \(U \) and a \(m \)-open set \(V \) such that \(x \in U \), \(y \in V \) and \(U \cap V = \emptyset \).

\textbf{Definition 2.4} \[3\]. A GTMS space \((X, \mu, m)\) is called a \textit{\(R_{0} \)-GTMS space} if \(\{x\} \) is \(G^* \)-closed set for each \(x \in X \).

\textbf{Theorem 2.5} \[4\]. Let \((X, \mu, m)\) be a GTMS space. Then the following are equivalent:

1. \(X \) is a \(T_{1} \)-GTMS space.
2. \(X \) is a \(T_{0} \)-GTMS space and \(R_{0} \)-GTMS space.
3 \(G_\mu \)-Closed Sets and \(G_m \)-Closed Sets

In this section, we shall start by introducing the notion of \(G_\mu \)-closed sets and investigate some of their properties.

Definition 3.1. A subset \(A \) of a GTMS space \((X, \mu, m)\) is said to be a \(G_\mu \)-closed set if \(c_\mu(A) \subset U \) whenever \(A \subset U \) and \(U \) is open. The complement of a \(G_\mu \)-closed set is called a \(G_\mu \)-open set.

Proposition 3.2. Let \((X, \mu, m)\) be a GTMS space and \(A \subset X \). If \(A \) is a \(\mu mG \)-closed set, then \(A \) is a \(G_\mu \)-closed set.

Proof. Assume that \(A \) is \(\mu mG \)-closed and let \(U \) be open such that \(A \subset U \). Then \(c_\mu(c_m(A)) \subset U \). From \(c_\mu(A) \subset c_\mu(c_m(A)) \), we have \(c_\mu(A) \subset U \). Therefore, \(A \) is \(G_\mu \)-closed.

Proposition 3.3. Let \((X, \mu, m)\) be a GTMS space and \(A \subset X \). If \(A \) is a \(m\mu G \)-closed set, then \(A \) is a \(G_\mu \)-closed set.

Proof. The proof is similar to the proof of Proposition 3.2.

Proposition 3.4. Let \((X, \mu, m)\) be a GTMS space and \(A \subset X \). If \(A \) is a \(\mu \)-closed set, then \(A \) is a \(G_\mu \)-closed set.

Proof. It follows from the fact that if \(A \) is a \(\mu \)-closed set, then \(c_\mu(A) = A \).

Remark 3.5. The converse of Proposition 3.2, 3.3 and 3.4 may not be true as the following example.

Example 3.6. Consider the GTMS space \((X, \mu, m)\), where \(X = \{1, 2, 3, 4\} \),
\[\mu = \{\emptyset, \{3, 4\}, \{1, 2, 3\}, X\} \) and \(m = \{\emptyset, \{2, 4\}, \{1, 2, 3\}, X\} \).
Then \(\{2\} \) is \(G_\mu \)-closed but it is not \(\mu mG \)-closed, \(m\mu G \)-closed and \(\mu \)-closed. Moreover, \(\{1, 3, 4\} \) is \(G_\mu \)-open.

Proposition 3.7. Let \((X, \mu, m)\) be a GTMS space and \(A \subset X \). If \(A \) is open and \(G_\mu \)-closed, then \(A \) is \(\mu \)-closed.

Proof. Assume that \(A \) is open and \(G_\mu \)-closed. Then \(c_\mu(A) \subset A \). Thus \(A \) is \(\mu \)-closed.

Proposition 3.8. Let \((X, \mu, m)\) be a GTMS space and \(A \subset X \). If \(A \) is \(G_\mu \)-closed, then \(c_\mu(A) \setminus A \) does not contain any nonempty closed set.

Proof. Assume that \(A \) is \(G_\mu \)-closed. Suppose to the contrary that \(c_\mu(A) \setminus A \) contains a nonempty closed set, say \(F \). Then \(F \subset c_\mu(A) \setminus A = c_\mu(A) \cap (X \setminus A) \). Thus \(A \subset X \setminus F \). Since \(A \) is \(G_\mu \)-closed and \(X \setminus F \) is open, \(c_\mu(A) \subset X \setminus F \). This implies \(F \subset X \setminus c_\mu(A) \). From \(F \subset c_\mu(A), F = \emptyset \) which contradicts with \(F \neq \emptyset \).
Proposition 3.8. Hence c and F

By assumption, $X \subseteq X$, then A is G_μ-closed and $A \subset B$, then B is G_μ-closed.

Proof. Assume that A is G_μ-closed and $A \subset B$. Suppose B is not G_μ-closed. Thus there exists an open set U such that $B \subseteq U$ and $c_\mu(B) \nsubseteq U$. Since A is G_μ-closed, $c_\mu(A) \subseteq U$, and so $X \setminus U \subseteq X \setminus c_\mu(A)$. This implies $X = (X \setminus c_\mu(A)) \cup U$ is μ-open which contradicts with $X \not\subseteq \mu$. Thus B is G_μ-closed.

Theorem 3.9. Let (X, μ, m) be a GTMS space and $A \subset X$. Then A is G_μ-open if and only if $F \subset c_\mu(A)$ whenever F is closed and $F \subset A$.

Proof. (\Rightarrow) Let F be closed such that $F \subset A$. Then $X \setminus F$ is open and $X \setminus A \subset X \setminus F$. By assumption, we obtain that $X \setminus A$ is G_μ-closed, and so $c_\mu(X \setminus A) \subset X \setminus F$. Since $X \setminus i_\mu(A) = c_\mu(X \setminus A)$, $F \subset i_\mu(A)$.

(\Leftarrow) Let U be open such that $X \setminus A \subset U$. Then $X \setminus U$ is closed and $X \setminus U \subset A$. By assumption, $X \setminus U \subset i_\mu(A)$. Thus $X \setminus i_\mu(A) \subset U$, and so $c_\mu(X \setminus A) \subset U$. Hence $X \setminus A$ is G_μ-closed, and so A is G_μ-open.

Proposition 3.11. Let (X, μ, m) be a GTMS space and $A \subset X$. If A is G_μ-closed, then $c_\mu(A) \setminus A$ is G_μ-open.

Proof. Assume that A is G_μ-closed. Suppose to the contrary that $c_\mu(A) \setminus A$ is not G_μ-open. By Theorem 3.10, there exists a closed set F such that $F \subset c_\mu(A) \setminus A$ and $F \nsubseteq i_\mu(c_\mu(A) \setminus A)$. This implies $\emptyset \neq F \subset c_\mu(A) \setminus A$. It is a contradiction with Proposition 3.8. Hence $c_\mu(A) \setminus A$ is G_μ-open.

Proposition 3.12. Let (X, μ, m) be a GTMS space and $A, B \subset X$. If A is G_μ-open and $i_\mu(A) \subset B \subset A$, then B is G_μ-open.

Proof. It follows from Theorem 3.9 and the fact that if $B \subset A \subset X$, then $i_\mu(B) \subset i_\mu(A)$ and $i_\mu(i_\mu(A)) \subset i_\mu(A)$.

Next, we will introduce the concept of G_m-closed sets and investigate some of their properties.

Definition 3.13. A subset A of a GTMS space (X, μ, m) is said to a G_m-closed set if $c_m(A) \subset U$ whenever $A \subset U$ and U is open. The complement of a G_m-closed set is called a G_m-open set.

Proposition 3.14. Let (X, μ, m) be a GTMS space and $A \subset X$. If A is a μmG-closed set, then A is a G_m-closed set.

Proof. The proof is similar to the proof of Proposition 3.12.

Proposition 3.15. Let (X, μ, m) be a GTMS space and $A \subset X$. If A is a $m\mu G$-closed set, then A is a G_m-closed set.

Proof. The proof is similar to the proof of Proposition 3.12.
Proposition 3.16. Let \((X, \mu, m)\) be a GTMS space and \(A \subset X\). If \(A\) is a \(m\)-closed set, then \(A\) is a \(G_m\)-closed set.

Proof. It follows from the fact that if \(A\) is a \(m\)-closed set, then \(c_m(A) = A\).

Remark 3.17. The converse of Propositions 3.14, 3.15 and 3.16 may not be true as the following example.

Example 3.18. In Example 3.6 we see that \(\{3\}\) is \(G_m\)-closed but it is not \(\mu m\)-closed, \(\mu \mu \mu G\)-closed and \(m\)-closed. Moreover, \(\{1, 2, 4\}\) is \(G_m\)-open.

Proposition 3.19. Let \((X, \mu, m)\) be a GTMS space and \(A \subset X\). If \(A\) is open and \(G_m\)-closed, then \(c_m(A) = A\).

Proof. Assume that \(A\) is open and \(G_m\)-closed. Then \(c_m(A) \subset A\). This implies \(c_m(A) = A\).

Proposition 3.20. Let \((X, \mu, m)\) be a GTMS space and \(A \subset X\). If \(A\) is \(G_m\)-closed, then \(c_m(A) \setminus A\) does not contain any nonempty closed set.

Proof. The proof is similar to the proof of Proposition 3.8.

Theorem 3.21. Let \((X, \mu, m)\) be a GTMS space and \(A \subset X\). Then \(A\) is \(G_m\)-open if and only if \(F \subset i_m(A)\) whenever \(F\) is closed and \(F \subset A\).

Proof. The proof is similar to the proof of Theorem 3.10.

Theorem 3.22. Let \((X, \mu, m)\) be a GTMS space and \(A \subset X\). If \(A\) is \(G_m\)-closed, then \(c_m(A) \setminus A\) is \(G_m\)-open.

Proof. It follows from Theorem 3.21 and Proposition 3.20.

Proposition 3.23. Let \((X, \mu, m)\) be a GTMS space and \(A, B \subset X\). If \(A\) is \(G_m\)-open and \(i_m(A) \subset B \subset A\), then \(B\) is \(G_m\)-open.

Proof. It follows from Theorem 3.21 and the fact that if \(B \subset A \subset X\), then \(i_m(B) \subset i_m(A)\) and \(i_m(i_m(A)) \subset i_m(A)\).

Now, we will give a characterization of \(\mu \mu G\)-closed sets and \(\mu m G\)-closed sets using \(G_{\mu}\)-closed sets and \(G_m\)-closed sets.

Theorem 3.24. Let \((X, \mu, m)\) be a GTMS space and \(A \subset X\). Then \(A\) is \(\mu \mu G\)-closed if and only if \(A\) is \(G_{\mu}\)-closed and \(c_{\mu}(A)\) is \(G_m\)-closed.

Proof. \((\Rightarrow)\) Assume that \(A\) is \(\mu \mu G\)-closed. By Proposition 3.3, we have \(A\) is \(G_{\mu}\)-closed. Next, we shall prove that \(c_{\mu}(A)\) is \(G_m\)-closed. Let \(U\) be an open set such that \(c_{\mu}(A) \subset U\). Then \(A \subset U\). Since \(A\) is \(\mu \mu G\)-closed, \(c_m(c_{\mu}(A)) \subset U\). Then \(c_m(A)\) is \(G_m\)-closed.

\((\Leftarrow)\) Assume that \(A\) is \(G_{\mu}\)-closed and \(c_{\mu}(A)\) is \(G_m\)-closed. To show that \(A\) is \(\mu \mu G\)-closed, let \(U\) be an open set such that \(A \subset U\). Since \(A\) is \(G_{\mu}\)-closed, \(c_{\mu}(A) \subset U\). Since \(c_{\mu}(A)\) is \(G_m\)-closed, \(c_m(c_{\mu}(A)) \subset U\). Then \(A\) is \(\mu \mu G\)-closed.
Theorem 3.25. Let \((X, \mu, m)\) be a GTMS space and \(A \subset X\). Then \(A\) is \(\mu m\)-closed if and only if \(A\) is \(G_m\)-closed and \(cm(A)\) is \(G_\mu\)-closed.

Proof. The proof is similar to the proof of Theorem 3.24.

Finally, we will discuss a relation of \(G_\mu\)-closed sets and \(G_m\)-closed sets under some conditions.

Theorem 3.26. Let \((X, \mu, m)\) be a GTMS space such that \(X \notin \mu\) and \(A \subset X\). If \(A\) is \(G_\mu\)-closed, then \(A\) is \(G_m\)-closed.

Proof. Assume that \(A\) is \(G_\mu\)-closed. Suppose to the contrary that \(A\) is not \(G_m\)-closed. Then there exists an open set \(U\) such that \(A \subset U\) and \(cm(A) \notin U\). Since \(A\) is \(G_\mu\)-closed, \(c_\mu(A) \subset U\). From \(c_\mu(A)\) is \(\mu\)-closed, \(X \setminus c_\mu(A)\) is \(\mu\)-open. Since \(U\) is open, \(U\) is \(\mu\)-open. This implies \(X = (X \setminus c_\mu(A)) \cup U\) is \(\mu\)-open. Thus \(X \in \mu\) which contradicts with \(X \notin \mu\). Thus \(A\) is \(G_m\)-closed.

Corollary 3.27. Let \((X, \mu, m)\) be a GTMS space such that \(X \notin \mu\) and \(A \subset X\). If \(A\) is \(G_\mu\)-open, then \(A\) is \(G_m\)-open.

Proof. It follows from Theorem 3.26.

4 GT\(_1\)-GTMS Spaces and GT\(_2\)-GTMS Spaces

In this section, we shall introduce the notions of GT\(_1\)-GTMS spaces and GT\(_2\)-GTMS spaces and investigate some of their characterization. We start by defining the \(G_\mu\)-closure and \(G_m\)-closure of a set in GTMS spaces.

Definition 4.1. Let \((X, \mu, m)\) be a GTMS space and \(A \subset X\). Defined the \(G_\mu\)-closure and \(G_m\)-closure of \(A\) as follows:

\[
c_{G_\mu}(A) = \bigcap \{K : K \text{ is } G_\mu\text{-closed and } A \subset K\}
\]

and

\[
c_{G_m}(A) = \bigcap \{K : K \text{ is } G_m\text{-closed and } A \subset K\},
\]

respectively.

Lemma 4.2. Let \((X, \mu, m)\) be a GTMS space and \(A \subset X\). Then \(x \in c_{G_\mu}(A)\) if and only if \(A \cap U \neq \emptyset\) for all \(G_\mu\)-open \(U\) containing \(x\).

Proof. \((\Rightarrow)\) Assume that there exists a \(G_\mu\)-open set \(U\) containing \(x\) such that \(A \cap U = \emptyset\). Then \(X \setminus U\) is \(G_\mu\)-closed and \(A \subset X \setminus U\). Since \(x \notin X \setminus U\), \(x \not\in c_{G_\mu}(A)\).

\((\Leftarrow)\) Assume that \(x \notin c_{G_\mu}(A)\). Then there exists a \(G_\mu\)-closed set \(K\) such that \(A \subset K\) and \(x \notin K\). Thus \(X \setminus K\) is \(G_\mu\)-open and \(x \in X \setminus K\). Moreover, \(A \cap (X \setminus K) = \emptyset\).
Lemma 4.3. Let (X, μ, m) be a GTMS space and $A \subset X$. Then $x \in c_{G_m}(A)$ if and only if $A \cap U \neq \emptyset$ for all G_m-open U containing x.

Proof. The proof is similar to the proof of Lemma 4.2.

Now, we shall give definition of GT_1-GTMS spaces.

Definition 4.4. A GTMS space (X, μ, m) is said to be GT_1-GTMS if for pair of distinct points x and y in X, there exist a G_μ-open set U and a G_m-open set V such that $x \in U$, $y \notin U$ and $y \in V$, $x \notin V$.

Proposition 4.5. If (X, μ, m) is T_1-GTMS, then (X, μ, m) is GT_1-GTMS.

Proof. It follows from the fact that every μ-open set is G_μ-open and every m-open set is G_m-open.

Remark 4.6. The converse of Proposition 4.5 may not be true as the following example.

Example 4.7. Consider the GTMS space (X, μ, m), where $X = \{1, 2, 3\}$,

$$
\mu = \emptyset, \{1, 2\}, \{1, 3\}, X \text{ and } m = \emptyset, X.
$$

Then (X, μ, m) is GT_1-GTMS but it is not T_1-GTMS.

Now, we will give a characterization of GT_1-GTMS spaces.

Theorem 4.8. Let (X, μ, m) be a GTMS space. Then the following are equivalent:

1. (X, μ, m) is GT_1-GTMS.
2. $c_{G_\mu}(\{x\}) = \{x\}$ and $c_{G_m}(\{x\}) = \{x\}$ for all $x \in X$.

Proof. (1) \Rightarrow (2) Assume that X is GT_1-GTMS. We will show that $c_{G_\mu}(\{x\}) = \{x\}$ and $c_{G_m}(\{x\}) = \{x\}$ for all $x \in X$. Let $x \in X$. It is clear that $\{x\} \subset c_{G_\mu}(\{x\})$. Let $y \in X$ be such that $y \neq x$. By assumption, there exists a G_μ-open set U such that $y \in U$ but $x \notin U$. Then $U \cap \{x\} = \emptyset$. Thus $y \notin c_{G_\mu}(\{x\})$. Hence $c_{G_\mu}(\{x\}) \subset \{x\}$. Then $c_{G_\mu}(\{x\}) = \{x\}$. Similarly, we can prove that $c_{G_m}(\{x\}) = \{x\}$.

(2) \Rightarrow (1) Assume that $c_{G_\mu}(\{x\}) = \{x\}$ and $c_{G_m}(\{x\}) = \{x\}$ for all $x \in X$. To show that X is GT_1-GTMS, let $x, y \in X$ with $x \neq y$. By assumption, $c_{G_\mu}(\{x\}) = \{x\}$ and $c_{G_\mu}(\{y\}) = \{y\}$. Thus $x \notin c_{G_\mu}(\{y\})$ and $y \notin c_{G_\mu}(\{x\})$. Then there exist a G_μ-open set U and G_m-open set V such that $x \in U$, $\{y\} \cap U = \emptyset$ and $y \in V$, $\{x\} \cap V = \emptyset$. Hence X is GT_1-GTMS.

Theorem 4.9. Let (X, μ, m) be a GTMS space such that X has at least two elements and $X \notin \mu$. Then X is GT_1-GTMS if and only if $\{a\}$ is G_μ-open in X for all $a \in X$.
Proof. \((\Rightarrow)\) Assume that \(X\) is GT1-GTMS. To show that \(\{a\}\) is \(G_\mu\)-open in \(X\) for all \(a \in X\), let \(a \in X\). Suppose \(\{a\}\) is not \(G_\mu\)-open. Then there exists a closed set \(F\) such that \(F \subseteq \{a\}\) and \(F \not\subseteq i_\mu(\{a\})\). This implies \(\{a\} = F\) is closed. Thus \(X \setminus \{a\}\) is open. Since \(X\) has at least two elements, \(X \setminus \{a\} \neq \emptyset\), say \(b \in X \setminus \{a\}\).

By assumption, there exist a \(G_\mu\)-open set \(U\) and a \(G_m\)-open set \(V\) such that
\[
a \in U, b \notin U \text{ and } b \in V, a \notin V.
\]
Since \(U\) is \(G_\mu\)-open and \(\{a\}\) is closed such that \(\{a\} \subset U\), \(\{a\} \subset i_\mu(U)\). Then \(X = (X \setminus \{a\}) \cup i_\mu(U) \in \mu\) which contradicts with \(X \notin \mu\). Hence \(\{a\}\) is \(G_\mu\)-open.

\((\Leftarrow)\) Assume that \(\{a\}\) is \(G_\mu\)-open in \(X\) for all \(a \in X\). To show that \(X\) is GT1-GTMS, let \(x, y \in X\) be such that \(x \neq y\). By assumption, \(\{x\}\) and \(\{y\}\) is \(G_\mu\)-open. Since \(X \notin \mu\), by Corollary 5.27 \(\{y\}\) is \(G_m\)-open. Set \(U = \{x\}\) and \(V = \{y\}\). Then \(U\) is \(G_\mu\)-open and \(V\) is \(G_m\)-open. Moreover, \(x \in U, y \notin U\) and \(y \in V, x \notin V\). Hence \(X\) is GT1-GTMS.

Next, we will introduce the concepts of GT0-GTMS spaces and GR0-GTMS spaces.

Definition 4.10. A GTMS space \((X, \mu, m)\) is called GT0-GTMS if for any pair of distinct points \(x\) and \(y\) in \(X\), there exists a subset \(U\) of \(X\) which is \(G_\mu\)-open or \(G_m\)-open such that \(x \in U, y \notin U\) or \(y \in U, x \notin U\).

Lemma 4.11. If \((X, \mu, m)\) is GT1-GTMS, then \((X, \mu, m)\) is GT0-GTMS.

Proof. Assume that \((X, \mu, m)\) is GT1-GTMS. To show that \((X, \mu, m)\) is GT0-GTMS, let \(x, y \in X\) with \(x \neq y\). Since \((X, \mu, m)\) is GT1-GTMS, there exist a \(G_\mu\)-open set \(U\) and a \(G_m\)-open set \(V\) such that \(x \in U, y \notin U\) and \(y \in V, x \notin V\). Hence \((X, \mu, m)\) is GT0-GTMS.

Remark 4.12. The converse of the previous Lemma 4.11 need not be true as the following example.

Example 4.13. Consider the GTMS space \((X, \mu, m)\), where \(X = \{1, 2, 3\}, \mu = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, X\}\), and \(m = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, X\}\).

Then \((X, \mu, m)\) is GT0-GTMS but it is not GT1-GTMS.

Definition 4.14. A GTMS space \((X, \mu, m)\) is said to be GR0-GTMS if for each \(x, y \in X\) if \(x \in c_{G_\mu}(c_{G_m}(\{y\}))\), then \(y \in c_{G_\mu}(c_{G_m}(\{x\}))\) and if \(x \in c_{G_m}(c_{G_\mu}(\{y\}))\), then \(y \in c_{G_m}(c_{G_\mu}(\{x\}))\).

Example 4.15. Consider the GTMS space \((X, \mu, m)\), where \(X = \{1, 2, 3\}, \mu = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, X\}\).

Then \((X, \mu, m)\) is GR0-GTMS.

Lemma 4.16. If \((X, \mu, m)\) is GT1-GTMS, then \((X, \mu, m)\) is GR0-GTMS.
Proof. Assume that \((X, \mu, m)\) is GT\(_1\)-GTMS. To show that \((X, \mu, m)\) is GR\(_0\)-GTMS, let \(x, y \in X\) with \(x \in c_{G_m}(c_{G_m}({\{y\}}))\). Since \(X\) is GT\(_1\)-GTMS, we obtain that \(c_{G_m}(c_{G_m}({\{y\}})) = c_{G_m}({\{y\}}) = \{y\}\). Then \(x \in \{y\}\), and so \(x = y\). Hence \(y \in c_{G_m}(\{x\})\). Similarly, we can prove that if \(x \in c_{G_m}(c_{G_m}({\{y\}}))\), then \(y \in c_{G_m}(\{x\})\). Therefore, \((X, \mu, m)\) is GR\(_0\)-GTMS.

Theorem 4.17. \((X, \mu, m)\) is GT\(_1\)-GTMS if and only if \((X, \mu, m)\) is GT\(_0\)-GTMS and GR\(_0\)-GTMS.

Proof. \((\Rightarrow)\) It follows from Lemma 4.11 and 4.16.

\((\Leftarrow)\) Assume that \((X, \mu, m)\) is GT\(_0\)-GTMS and GR\(_0\)-GTMS. To show that \((X, \mu, m)\) is GT\(_1\)-GTMS, fix \(x \in X\). Let \(y \in X\) with \(y \neq x\). Since \(X\) is GT\(_0\)-GTMS, there exists a subset \(U\) of \(X\) which is \(G_m\)-open or \(G_m\)-open such that \(x \in U\), \(y \notin U\) or \(y \in U, x \notin U\). Without loss of generality, we assume that \(U\) is \(G_m\)-open. If \(x \in U\) and \(y \notin U\), then \(x \notin c_{G_m}(\{y\})\). Since \(X\) is GR\(_0\)-GTMS, \(y \notin c_{G_m}(c_{G_m}(\{x\}))\), and so \(y \notin c_{G_m}(\{x\})\). On the other hand, if \(y \in U\) and \(x \notin U\), then \(y \notin c_{G_m}(\{x\})\). Since \(X\) is GR\(_0\)-GTMS, \(x \notin c_{G_m}(c_{G_m}(\{y\}))\). Then \(x \notin c_{G_m}(\{y\})\), and so \(y \notin c_{G_m}(\{x\})\) and \(y \notin c_{G_m}(\{x\})\). This implies \(c_{G_m}(\{x\}) = \{x\}\) and \(c_{G_m}(\{x\}) = \{x\}\). Therefore, \((X, \mu, m)\) is GT\(_1\)-GTMS.

Now, we will introduce the notion of GT\(_2\)-GTMS spaces.

Definition 4.18. A GTMS space \((X, \mu, m)\) is is said to be GT\(_2\)-GTMS if for any pair of distinct points \(x\) and \(y\) in \(X\), there exist a \(G_m\)-open set \(U\) and a \(G_m\)-open set \(V\) such that \(x \in U\), \(y \in V\) and \(U \cap V = \emptyset\).

Proposition 4.19. If \((X, \mu, m)\) is T\(_2\)-GTMS, then \((X, \mu, m)\) is GT\(_2\)-GTMS.

Proof. Assume that \((X, \mu, m)\) is T\(_2\)-GTMS. To show that \((X, \mu, m)\) is GT\(_2\)-GTMS, let \(x, y \in X\) be such that \(x \neq y\). Since \(X\) is T\(_2\)-GTMS, there exist \(G_m\)-open \(U\) and \(G_m\)-open \(V\) such that \(x \in U\), \(y \in V\) and \(U \cap V = \emptyset\). By Proposition 3.4 and 3.16, \(U\) is \(G_m\)-open and \(V\) is \(G_m\)-open. Therefore, \((X, \mu, m)\) is GT\(_2\)-GTMS.

Example 4.20. Consider the GTMS space \((X, \mu, m)\), where \(X = \{1, 2, 3\}\),

\[
\mu = \{\emptyset\} \text{ and } m = \{\emptyset, X\}.
\]

Then \((X, \mu, m)\) is GT\(_2\)-GTMS but it is not T\(_2\)-GTMS.

Lemma 4.21. If \((X, \mu, m)\) is GT\(_2\)-GTMS, then \((X, \mu, m)\) is GT\(_1\)-GTMS.

Proof. Assume that \((X, \mu, m)\) is GT\(_2\)-GTMS. To show that \((X, \mu, m)\) is GT\(_1\)-GTMS, let \(x, y \in X\) be such that \(x \neq y\). Since \(X\) is GT\(_2\)-GTMS, there exist \(G_m\)-open \(U\) and \(G_m\)-open \(V\) such that \(x \in U\), \(y \in V\) and \(U \cap V = \emptyset\). Then \(x \in U\), \(y \notin U\) and \(y \in V\), \(x \notin V\). Hence \(X\) is GT\(_1\)-GTMS.

Remark 4.22. The converse of Lemma 4.21 need not be true as the following example.
Example 4.23. In Example 4.19 we see that \((X, \mu, m)\) is GT$_1$-GTMS but it is not GT$_2$-GTMS.

Next, we will introduce the concept of GR$_1$-GTMS spaces.

Definition 4.24. A GTMS space \((X, \mu, m)\) is said to be GR$_1$-GTMS if for all \(x, y \in X\) with \(x \neq y\) if \(c_{G\mu}(\{x\}) \neq c_{Gm}(\{y\})\), then there exist disjoint a \(G\mu\)-open set \(U\) and a \(Gm\)-open set \(V\) such that \(c_{G\mu}(\{x\}) \subset U\) and \(c_{Gm}(\{y\}) \subset V\).

Example 4.25. Consider the GTMS space \((X, \mu, m)\), where \(X = \{1, 2\}\),

\[\mu = \{\emptyset, \{1\}, \{2\}, X\} = m.\]

Then \((X, \mu, m)\) is GR$_1$-GTMS.

Lemma 4.26. If \((X, \mu, m)\) is GR$_1$-GTMS, then \((X, \mu, m)\) is GR$_0$-GTMS.

Proof. Assume that \((X, \mu, m)\) is GR$_1$-GTMS. To show that \((X, \mu, m)\) is GR$_0$-GTMS, let \(x, y \in X\) with \(x \neq y\) and \(c_{G\mu}(\{x\}) \neq c_{Gm}(\{y\})\). By assumption, there exist disjoint \(G\mu\)-open set \(U\) and \(Gm\)-open set \(V\) such that \(c_{G\mu}(\{x\}) \subset U\) and \(c_{Gm}(\{y\}) \subset V\). Thus \(x \notin c_{G\mu}(c_{Gm}(\{y\}))\). Similarly, we can prove that if \(y \notin c_{G\mu}(\{x\})\), then \(x \notin c_{Gm}(c_{G\mu}(\{y\}))\). Therefore, \((X, \mu, m)\) is GR$_0$-GTMS.

Remark 4.27. The converse of Lemma 4.30 may not be true as the following example.

Example 4.28. In Example 4.15 we see that \((X, \mu, m)\) is GR$_0$-GTMS but it is not GR$_1$-GTMS.

Lemma 4.29. If \((X, \mu, m)\) is GT$_2$-GTMS, then \((X, \mu, m)\) is GR$_1$-GTMS.

Proof. Assume that \((X, \mu, m)\) is GT$_2$-GTMS. To show that \((X, \mu, m)\) is GR$_1$-GTMS, let \(x, y \in X\) with \(x \neq y\) and \(c_{G\mu}(\{x\}) \neq c_{Gm}(\{y\})\). By assumption and Lemma 4.21 \((X, \mu, m)\) is GT$_1$-GTMS. Then \(c_{G\mu}(\{x\}) = \{x\}\) and \(c_{Gm}(\{y\}) = \{y\}\). Since \((X, \mu, m)\) is GT$_2$-GTMS, there exist disjoint \(G\mu\)-open \(U\) and \(Gm\)-open \(V\) such that \(c_{G\mu}(\{x\}) = \{x\} \subset U\) and \(c_{Gm}(\{y\}) = \{y\} \subset V\). Therefore, \((X, \mu, m)\) is GR$_1$-GTMS.

Theorem 4.30. \((X, \mu, m)\) is GT$_2$-GTMS if and only if \((X, \mu, m)\) is GT$_0$-GTMS and GR$_1$-GTMS.

Proof. \((\Rightarrow)\) It follows from Lemma 4.21, 4.11 and 4.29.

\((\Leftarrow)\) Assume that \((X, \mu, m)\) is GT$_0$-GTMS and GR$_1$-GTMS. By Lemma 4.26 and Theorem 4.17 \((X, \mu, m)\) is GT$_1$-GTMS. To show that \((X, \mu, m)\) is GT$_2$-GTMS, let \(x, y \in X\) with \(x \neq y\). Since \(X\) is GT$_1$-GTMS, thus \(c_{G\mu}(\{x\}) = \{x\} \neq \{y\} = c_{Gm}(\{y\})\). Since \(X\) is GR$_1$-GTMS, there exist disjoint a \(G\mu\)-open set \(U\) and a \(Gm\)-open set \(V\) such that \(c_{G\mu}(\{x\}) = \{x\} \subset U\) and \(c_{Gm}(\{y\}) = \{y\} \subset V\). Therefore, \((X, \mu, m)\) is GT$_2$-GTMS.
Acknowledgements: The authors would like to thank the referees for helpful comments and suggestions on the manuscript. The authors also would like to thank Mahasarakham University for the financial support.

References

(Received 5 February 2017)
(Accepted 25 September 2017)