A New Type of Difference Sequence Spaces

Tanweer Jalal†,‡ and Reyaz Ahmad†

†Department of General Studies, Yanbu Industrial College
P.O. Box-30436, Yanbu, Kingdom of Saudi Arabia
e-mail: tjalal@rediffmail.com
‡Department Mathematics, National Institute of Technology (NIT)
Srinagar-190006, J & K, India
e-mail: reyazrather@gmail.com

Abstract: In this paper, we introduce a new type of difference operator \(\triangle_m^n \) for fixed \(m, n \in \mathbb{N} \) and define the sequence spaces

\[
E(\triangle_m^n) = \{ x = (x_k) : (\triangle_m^n x_k) = (\triangle^n x_k - \triangle^n x_{k+m}) \in E, E \in \{ l_\infty, c, c_0 \} \}
\]

and study some topological properties of these spaces. We also obtain some inclusion relations involving these sequence spaces. With different choices of \(m \) and \(n \) it is observed that these spaces include many known spaces as special cases.

Keywords: Difference sequence Space; Banach space; Solid space; Symmetric space; Completeness.

2010 Mathematics Subject Classification: 40A05; 40C05; 46A45.

1 Introduction

Throughout the paper, \(\omega, l_\infty, c \) and \(c_0 \) denote the space of all, bounded, convergent and null sequences \(x = (x_k) \) with complex terms respectively, normed by

\[
\|x\| = \sup_{k \geq 1} |x_k|.
\]

The zero sequence is denoted by \(\theta = (0, 0, ...) \).

†Corresponding author email: tjalal@rediffmail.com (T. Jalal)

Copyright © 2012 by the Mathematical Association of Thailand.
All rights reserved.
Kizmaz [1] defined the difference sequence spaces $Z(\Delta)$ as follows

$$Z(\Delta) = \{x = (x_k) \in \omega : (\Delta x_k) \in Z\}$$

where $Z \in \{l_\infty, c, c_0\}$ and $\Delta x_k = x_k - x_{k+1}$. The above sequence spaces are Banach spaces normed by

$$\|x\|_\Delta = |x_1| + \sup_{k \geq 1} |x_k|.$$

The idea of Kizmaz [1] was applied to introduce the different type of sequence spaces by several authors (see [2–7]) who studied their different properties.

Serigol [8] defined the sequence spaces

$$X(\Delta_q) = \{x = (x_k) : \Delta_q x = k^q(x_k - x_{k+1}) \in X, q < 1\},$$

where $X \in \{l_\infty, c, c_0\}$. Serigol proved that the above spaces are Banach spaces with respect to the norm

$$\|x\|_{\Delta_q} = |x_1| + \sup_{k \geq 1} |k^q(x_k - x_{k+1})|$$

and studied some properties.

Et and Colak [9, 10] defined the sequence spaces

$$X(\Delta_m) = \{x = (x_k) : (\Delta_m x_k) \in X\},$$

where $m \in \mathbb{N}, \Delta_m x_k = \Delta^{m-1} x_k - \Delta^{m-1} x_{k+1}$ and $X \in \{l_\infty, c, c_0\}$ so that

$$\Delta_m x_k = \sum_{\nu=0}^{m} (-1)^\nu \binom{m}{\nu} x_{k+\nu}.$$

They showed that the spaces $l_\infty(\Delta_m^n), c(\Delta_m^n)$ and $c_0(\Delta_m^n)$ are Banach spaces with respect to the norm

$$\|x\|_{\Delta_m} = \sum_{i=1}^{m} |x_i| + \sup_{k \geq 1} |\Delta_m x_k|.$$

Bektas and Colak [3] defined and studied the sequence spaces

$$X(\Delta_m^r) = \{x = (x_k) : (k^r \Delta_m x_k) \in X\},$$

where $m \in \mathbb{N}, r \in \mathbb{R}$ and $X \in \{l_\infty, c, c_0\}$. They showed that the spaces are Banach spaces with respect to the norm

$$\|x\|_{\Delta_m^r} = \sum_{i=1}^{m} |x_i| + \sup_{k} k^r |\Delta_m x_k|.$$
Esi et al. [11] introduced the difference operator Δ^q_p for fixed $p, q \in \mathbb{N}$ and defined the sequence spaces

$$X(\Delta^q_p) = \{x = (x_k) : (\Delta^q_p x_k) \in X\},$$

where $\Delta^q_p x_k = \Delta^q_p -1 x_k - \Delta^q_p -1 x_{k+p}$ and $X \in \{l_\infty, c, c_0\}$ and proved that the spaces are Banach spaces with respect to the norm

$$\|x\|_{\Delta^q_p} = \sum_{i=1}^{pq} |x_i| + \sup_{k \geq 1} |\Delta^q_p x_k|.$$

2 Definitions and Preliminaries

A sequence X is said to be **solid (normal)** if $(x_k) \in X$ implies $(\alpha_k x_k) \in X$ for all sequences of the scalars (α_k) with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$. A sequence X is said to be **monotonic** if it contains the canonical preimage of all its step spaces. A sequence X is said to be **convergence free** if $(y_k) \in X$ whenever $(x_k) \in X$ and $y_k = 0$ whenever $x_k = 0$. A sequence X is said to be **symmetric**, if $(x_{\pi(k)}) \in X$ whenever $(x_k) \in X$ where $\pi(k)$ is permutation of \mathbb{N}, the set of natural numbers.

Let $m, n \geq 1$ be fixed positive integers, then we introduce a new type of difference operators Δ^m_n where $\Delta^m_n x_k = \Delta^n x_k - \Delta^n x_{k+m}$ and define the sequence spaces $Z(\Delta^m_n)$ as

$$Z(\Delta^m_n) = \{x = (x_k) : (\Delta^m_n x_k) = (\Delta^n x_k - \Delta^n x_{k+m}) \in Z\}$$

where $Z \in \{l_\infty, c, c_0\}$. So that

$$\Delta^m_n x_k = \Delta^n x_k - \Delta^n x_{k+m}$$

$$= \sum_{\nu=0}^{n} (-1)^\nu \binom{n}{\nu} (x_{k+\nu} - x_{k+m+\nu}).$$

3 Main Results

Proposition 3.1. The spaces $l_\infty(\Delta^m_n), c(\Delta^m_n)$ and $c_0(\Delta^m_n)$ are normed linear spaces normed by

$$\|x\|_{\Delta^m_n} = \sum_{r=1}^{m+n} |x_r| + \sup_{k \geq 1} |\Delta^m_n x_k|.$$ \hspace{1cm} (1.1)

Proof. Let α, β be scalars and $x, y \in l_\infty(\Delta^m_n)$. Then $\sup_{k \geq 1} |\Delta^m_n x_k| < \infty$ and $\sup_{k \geq 1} |\Delta^m_n y_k| < \infty$. This gives

$$\sup_{k \geq 1} |\Delta^m_n (\alpha x_k + \beta y_k)| \leq |\alpha| \sup_{k \geq 1} |\Delta^m_n x_k| + |\beta| \sup_{k \geq 1} |\Delta^m_n y_k| < \infty.$$
Hence \(l_\infty(\triangle_m^n) \) is a linear space. Similarly, it can be shown that \(c(\triangle_m^n) \) and \(c_0(\triangle_m^n) \) are linear spaces. To show that \(l_\infty(\triangle_m^n) \) is a normed linear space. It is clear that if \(x = \theta \). Then

\[
\|x\|_{\triangle_m^n} = \|\theta\|_{\triangle_m^n} = 0.
\]

Conversely, suppose that \(\|x\|_{\triangle_m^n} = 0 \). This gives

\[
\sum_{r=1}^{m+n} |x_r| + \sup_{k \geq 1} |\triangle_m^n x_k| = 0,
\]

which implies \(x_r = 0 \ \forall r = 1, 2, \ldots, m+n \) and \(\sup_{k \geq 1} |\triangle_m^n x_k| = 0 \), \(\forall k \in \mathbb{N} \), which further implies

\[
\sum_{\nu=0}^{n} (-1)^\nu \binom{n}{\nu} (x_{k+\nu} - x_{k+m+\nu}) = 0.
\]

This gives

\[
\left| \binom{n}{0} (x_k - x_{k+m}) - \binom{n}{1} (x_{k+1} - x_{k+m+1}) + \cdots \right. \\
\left. + (-1)^{n-1} \binom{n}{n-1} (x_{k+n-1} - x_{k+m+n-1}) + (-1)^n \binom{n}{n} (x_{k+n} - x_{k+m+n}) \right| = 0.
\]

Put \(k = 1 \), we get

\[
\left| \binom{n}{0} (x_1 - x_{m+1}) - \binom{n}{1} (x_2 - x_{m+2}) + \cdots \right. \\
\left. + (-1)^{n-1} \binom{n}{n-1} (x_n - x_{m+n}) + (-1)^n \binom{n}{n} (x_{n+1} - x_{m+n+1}) \right| = 0,
\]

which implies

\[
\left| (-1)^n \binom{n}{n} x_{m+n+1} \right| = 0.
\]

This gives \(x_{(m+n)+1} = 0 \). Proceeding in this way, we have \(x_k = 0 \), \(\forall k \in \mathbb{N} \). Thus, \(\|x\|_{\triangle_m^n} = 0 \iff x = \theta \). Further

\[
\|x\|_{\triangle_m^n} = \sum_{r=1}^{m+n} |x_r + y_r| + \sup_{k \geq 1} |\triangle_m^n (x_k + y_k)| \\
\leq \|x\|_{\triangle_m^n} + \|y\|_{\triangle_m^n}.
\]

Finally, we have

\[
\|\lambda x\|_{\triangle_m^n} = \sum_{r=1}^{m+n} |\lambda x_r| + \sup_{k \geq 1} |\triangle_m^n (\lambda x_k)| = |\lambda| \|x\|_{\triangle_m^n}.
\]
Hence $l_\infty(\Delta_m^n)$ is a normed linear space. Similarly, it can be shown that $c(\Delta_m^n)$ and $c_0(\Delta_m^n)$ are normed linear spaces.

The following proposition is easily obtained.

Proposition 3.2.

1. $c_0(\Delta_m^n) \subset c(\Delta_m^n) \subset l_\infty(\Delta_m^n)$ and the inclusions are proper.
2. $Z(\Delta_m^n) \subset Z(\Delta_m^n)$ for $Z \in \{l_\infty, c, c_0\}$, $1 \leq i < n$ and the inclusions are strict.

Theorem 3.3. The spaces $l_\infty(\Delta_m^n), c(\Delta_m^n)$ and $c_0(\Delta_m^n)$ are Banach spaces under the norm defined in (1.1).

Proof. Let (x^i) be a Cauchy sequence in $l_\infty(\Delta_m^n)$ where $x^i = (x^i_k) = (x^i_1, x^i_2, \ldots)$. Then for given $\epsilon > 0$, we can find a positive integer n_0 such that

$$\|x^i - x^j\| < \epsilon, \quad \forall i, j \geq n_0.$$

This gives

$$\sum_{r=1}^{m+n} |x^i_r - x^j_r| < \epsilon \quad \text{and} \quad \sup_{k \geq 1} |\Delta_m^n(x^i_k - x^j_k)| < \epsilon, \quad \forall i, j \geq n_0,$$

which gives

$$|x^i_r - y^i_r| < \epsilon, \quad \forall i, j \geq n_0 \text{ and } r = 1, 2, \ldots, m+n.$$

This shows that (x^i_k) is a Cauchy sequence for $1 \leq k \leq m+n$. Let $\lim_{i \to \infty} x^i_k = x_k$ for $1 \leq k \leq m+n$. Also, since $\sup_{k \geq 1} |\Delta_m^n(x^i_k - x^j_k)| < \epsilon, \quad \forall i, j \geq n_0$, and $k \in N$. This shows that $(\Delta_m^n x^i_k)$ is also a Cauchy sequence $\forall k \in N$. Let $\lim_{i \to \infty} \Delta_m^n x^i_k = y_k, \quad \forall k \in N$. This gives

$$\lim_{i \to \infty} \left[\sum_{\nu=0}^{n} (-1)^\nu \binom{n}{\nu} (x^i_{k+\nu} - x^i_{k+m+\nu}) \right] = y_k.$$

Put $k = 1$, we get

$$\lim_{i \to \infty} \left[\sum_{\nu=0}^{n} (-1)^\nu \binom{n}{\nu} (x^i_{1+\nu} - x^i_{1+m+\nu}) \right] = y_1.$$

This gives

$$\lim_{i \to \infty} \left[\binom{n}{0} (x^i_1 - x^i_{m+1}) - \binom{n}{1} (x^i_2 - x^i_{m+2}) + \cdots \right].$$
which implies by using \(\lim_{i \to \infty} x^i_k = x_k \) for \(1 \leq k \leq m + n \) that
\[
\left[\binom{n}{0} (x_1 - x_{m+1}) - \binom{n}{1} (x_2 - x_{m+2}) + \cdots \right.
\left. + (-1)^n \binom{n}{n} (x_{1+n} - \lim_{i \to \infty} x^i_{m+n+1}) \right] = y_1.
\]
This gives
\[
\lim_{i \to \infty} x^i_{(m+n)+1} = x_{(m+n)+1},
\]
where
\[
x_{(m+n)+1} = \frac{1}{y_1 - \left\{ \binom{n}{0} (x_1 - x_{m+1}) - \binom{n}{1} (x_2 - x_{m+2}) + \cdots \right.}
\left. + (-1)^n \binom{n}{n} (x_{1+n}) \right\}].
\]
Proceeding similarly, we get
\[
\lim_{i \to \infty} x^i_k = x_k, \quad \forall k \geq 1.
\]
Now \(\sum_{r=1}^{m+n} |x^i_k - x^j_k| < \epsilon, \quad \forall i, j \geq n_0. \) This gives
\[
\lim_{j \to \infty} \sum_{r=1}^{m+n} |x^i_r - x^j_r| < \epsilon, \quad \forall i \geq n_0,
\]
which implies
\[
\sum_{r=1}^{m+n} |x^i_r - x^j_r| < \epsilon, \quad \forall i \geq n_0.
\]
Also, we have
\[
|\Delta^m_{n}x^i_k - \Delta^m_{n}x^j_k| < \epsilon, \quad \forall i, j \geq n_0 \text{ and } k \geq 1.
\]
This gives
\[
\lim_{j \to \infty} |\Delta^m_{n}x^i_k - \Delta^m_{n}x^j_k| < \epsilon, \quad \forall i \geq n_0 \text{ and } k \geq 1,
\]
which gives
\[
|\Delta^m_{n}x^i_k - \lim_{j \to \infty} \sum_{\nu=0}^{n} (-1)^\nu \binom{n}{\nu} (x^j_{k+\nu} - x^j_{k+m+\nu})| < \epsilon \quad \forall i \geq n_0 \text{ and } k \geq 1,
\]
which further gives

\[|\triangle_m^n x_k - \triangle_m^n x_k| < \epsilon, \forall i \geq n_0 \text{ and } k \geq 1. \]

This gives

\[|\triangle_m^i x_k - \triangle_m^i x_k| < \epsilon, \forall i \geq n_0 \text{ and } k \geq 1. \]

Hence

\[\sum_{r=1}^{m+n} |x_i - x_r| + \sup_{k \geq 1} |\triangle_m^n (x_k) - x_k| < 2\epsilon, \forall i \geq n_0. \]

This shows that \(x^i \rightarrow x \) as \(i \rightarrow \infty \). Also since

\[
|\triangle_m^n x_k| = \sum_{\nu=0}^{n} (-1)^\nu \binom{n}{\nu} (x_{k+\nu} - x_{k+m+\nu}) \\
= \sum_{\nu=0}^{n} (-1)^\nu \binom{n}{\nu} \left(x_{k+m+\nu} - x_{k+m} - \left(x_{k+\nu} - x_{k+m+\nu} \right) + \left(x_{k+\nu} - x_{k+m+\nu} \right) \right) \\
\leq \sum_{\nu=0}^{n} (-1)^\nu \binom{n}{\nu} \left(x_{k+m} - x_{k+m+\nu} - x_{k+m+\nu} + x_{k+m+\nu} \right) \\
+ \sum_{\nu=0}^{n} (-1)^\nu \binom{n}{\nu} \left(x_{k+m+\nu} - x_{k+m+\nu} \right) \\
\leq \|x^n - x\|_{\triangle_m^n} + ||\triangle_m^n x^n|| = O(1).
\]

Hence \(x \in l_\infty(\triangle_m^n) \). This shows that \(l_\infty(\triangle_m^n) \) is a Banach space. Similarly, it can be shown that \(c(\triangle_m^n) \) and \(c_0(\triangle_m^n) \) are Banach spaces.

Corollary 3.4. The spaces \(c(\triangle_m^n) \) and \(c_0(\triangle_m^n) \) are nowhere dense subsets of \(l_\infty(\triangle_m^n) \).

Proof. From Proposition 3.1, the inclusion \(c(\triangle_m^n) \subset l_\infty(\triangle_m^n) \) and \(c_0(\triangle_m^n) \subset l_\infty(\triangle_m^n) \) are strict. Further from Theorem 3.3, it follows that the spaces \(c(\triangle_m^n) \) and \(c_0(\triangle_m^n) \) are closed. Hence the spaces \(c(\triangle_m^n) \) and \(c_0(\triangle_m^n) \) are nowhere dense subsets of \(l_\infty(\triangle_m^n) \).

Theorem 3.5. The spaces \(l_\infty(\triangle_m^n) \), \(c(\triangle_m^n) \) and \(c_0(\triangle_m^n) \) are not solid in general.

Proof. To show that the above spaces are not solid in general. Let \(m = n = 2 \) and consider the sequence \((x_k)\) defined as

\[x_1 = 1 \text{ and } x_{k+1} = x_k + k + 2, \forall k \in N. \]

Then \((x_k) \in c_0(\Delta_2^2) \subset c(\Delta_2^2) \subset l_\infty(\Delta_2^2)\). Now consider the sequence of scalars \((\alpha_k)\) defined by

\[
\alpha_k = \begin{cases}
1, & \text{if } k = 3i, i \in N, \\
0, & \text{otherwise.}
\end{cases}
\]
Then \((\alpha_k x_k) \notin l_\infty(\Delta^2_2)\). Hence, the space \(l_\infty(\Delta^m_n)\) are not solid in general. Similarly, we can show that \(c(\Delta^m_n)\) and \(c_0(\Delta^m_n)\) are not solid in general.

Theorem 3.6. The spaces \(l_\infty(\Delta^m_n), c(\Delta^m_n)\) and \(c_0(\Delta^m_n)\) are not symmetric in general.

Proof. To show that the above spaces are not symmetric in general let \(m = n = 2\) and consider the sequence \((x_k)\) defined in Theorem 3.5. Then \((x_k) \in c_0(\Delta^2_2) \subset c(\Delta^2_2) \subset l_\infty(\Delta^2_2)\). Now consider the rearrangement \((y_k)\) of \((x_k)\) as

\[
y_k = \begin{cases}
1, & \text{if } k = 3n - 2, n \in \mathbb{N}, \\
x_{k+1}, & \text{if } k \text{ is even}, k \neq 3n - 2, n \in \mathbb{N}, \\
x_{k-1}, & \text{if } k \text{ is odd}, k \neq 3n - 2, n \in \mathbb{N}.
\end{cases}
\]

Then \((y_k) \notin l_\infty(\Delta^2_2)\). Hence, the space \(l_\infty(\Delta^2_2)\) is not symmetric in general. Similarly, we can show that \(c(\Delta^m_n)\) and \(c_0(\Delta^m_n)\) are not symmetric in general.

Theorem 3.7. The spaces \(l_\infty(\Delta^m_n), c(\Delta^m_n)\) and \(c_0(\Delta^m_n)\) are not convergence free in general.

Proof. To show that the above spaces are not convergence free in general let \(m = n = 2\) and \(n = 1\) and consider the sequence \((x_k)\) defined by \(x_k = 1, \forall k \in \mathbb{N}\). Then \((x_k) \in c_0(\Delta^1_1)\). Now consider the sequence \((y_k)\) as \(y_k = k^2, \forall k \in \mathbb{N}\). Then \((y_k) \notin c_0(\Delta^1_1)\). Hence, \(c_0(\Delta^m_n)\) is not convergence free in general. Similarly we can show that \(l_\infty(\Delta^m_n)\) and \(c(\Delta^m_n)\) are not convergence free in general.

Theorem 3.8. Theorem 3.8. The spaces \(l_\infty(\Delta^m_n), c(\Delta^m_n)\) and \(c_0(\Delta^m_n)\) are not monotonic in general.

Proof. Let \(m = 3\) and \(n = 2\) and consider the sequence \((x_k)\) defined as

\[
x_1 = 1, \text{ and } x_{k+1} = x_k + k + 1, \forall k \in \mathbb{N}.
\]

Then \(x_k \in c_0(\Delta^2_3)\). Now consider the sequence \((y_k)\) in its preimage as

\[
y_k = \begin{cases}
1, & \text{if } k \text{ odd}, \\
0, & \text{if } k \text{ even}.
\end{cases}
\]

Then \((y_k)\) neither belongs to \(c_0(\Delta^m_n)\) nor \(c(\Delta^2_3)\). Hence \(c(\Delta^2_3)\) and \(c_0(\Delta^m_n)\) are not monotonic in general. Similarly, we can show that \(l_\infty(\Delta^m_n)\) is not monotonic in general.

Acknowledgement: We would like to express our gratitude to the reviewers for their careful reading, valuable suggestions and corrections which improved the presentation of the paper.
References

(Received 25 December 2010)
(Accepted 5 October 2011)