Strong Convergence by a Hybrid Algorithm for Solving Equilibrium Problem and Fixed Point Problem of a Lipschitz Pseudo-Contraction in Hilbert Spaces

Apisit Jarernsuk and Kasamsuk Ungchittrakool

Department of Mathematics, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand

e-mail: kasamsuku@nu.ac.th

Abstract: In this research, we create and prove a strong convergence theorem by using the hybrid iterative algorithm which was proposed by Yao et al. [Nonlinear Anal. 71 (2009) 4997–5002] for finding the common element of fixed point set of a Lipshitz pseudo-contraction and the set of equilibrium problem in Hilbert spaces. Moreover, the results not only cover the original research but can also be applied for finding the common element of the set of zeroes of a Lipshitz monotone mapping and the set of equilibrium problem in Hilbert spaces.

Keywords: Hybrid algorithm; Pseudo-contractive mapping; Strong convergence; Equilibrium problem; Hilbert space.

2010 Mathematics Subject Classification: 47H05; 47H09; 47H10; 47J25.

1 Introduction

Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$. Let C be a nonempty closed convex subset of H and $F : C \times C \to \mathbb{R}$ be a bifunction, where \mathbb{R} is the set of real numbers. The equilibrium problem (for short, EP) is to find $x \in C$ such that

Copyright © 2012 by the Mathematical Association of Thailand. All rights reserved.
The set of solution (1.1) is denote by $EP(F)$. Given a mapping $T : C \to H$ and let $F(x, y) = \langle Tx, y - x \rangle$ for all $x, y \in C$. Then, $x \in EP(F)$ if and only if $x \in C$ is a solution of the variational inequality $(Tx, y - x) \geq 0$ for all $y \in C$. In addition, there are several other problems, for example, the complementarity problem, fixed point problem and optimization problem, which can also be written in the form of an EP. In other words, the EP is an unifying model for several problems arising in physics, engineering, science, optimization, economics, etc. There are many papers have appeared in the literature on the existence of solutions of EP (see, for example [1–4] and references therein). Motivated by the work [5–7], Takahashi and Takahashi [8] introduced an iterative scheme by the viscosity approximation method for finding a common element of the set of solutions of the EP (1.1) and the set of fixed point of nonexpansive mapping in the setting of Hilbert space. They also studied the strong convergence of the sequences generated by their algorithm for a solution of the EP which is also a fixed point of a nonexpansive mapping defined on a closed convex subset of a Hilbert space.

Recall, a mapping T with domain $D(T)$ and range $R(T)$ in H is called non-expansive if

$$
\|Tx - Ty\| \leq \|x - y\|, \forall x, y \in D(T).
$$

The mapping T is said to be a strict pseudo-contraction if there exists a constant $0 \leq \kappa < 1$ such that

$$
\|Tx - Ty\|^2 \leq \|x - y\|^2 + \kappa \|(I - T)x - (I - T)y\|^2, \forall x, y \in D(T). \tag{1.2}
$$

In this case, T may be called as κ-strict pseudo-contraction mapping. In the even that $\kappa = 1$, T is said to be a pseudo-contraction, i.e.,

$$
\|Tx - Ty\|^2 \leq \|x - y\|^2 + \|(I - T)x - (I - T)y\|^2, \forall x, y \in D(T). \tag{1.3}
$$

It is easy to see that (1.3) is equivalent to

$$
\langle x - y, (I - T)x - (I - T)y \rangle \geq 0, \forall x, y \in D(T).
$$

By definition, it is clear that

$$
\text{nonexpansive} \Rightarrow \text{strict pseudo-contraction} \Rightarrow \text{pseudo-contraction}.
$$

However, the following examples show that the converse is not true.

Example 1.1. Take $X = \mathbb{R}^2$, $B = \{x \in \mathbb{R}^2 : \|x\| \leq 1\}$, $B_1 = \{x \in B : \|x\| \leq \frac{1}{2}\}$, $B_2 = \{x \in B : \frac{1}{2} \leq \|x\| \leq 1\}$. If $x = (a, b) \in X$ we define x^\perp to be $(b, -a) \in X$.

Define $T : B \to B$ by

$$
Tx = \begin{cases}
 x + x^\perp, & x \in B_1, \\
 \frac{x}{\|x\|} - x + x^\perp, & x \in B_2.
\end{cases}
$$

Then, T is Lipschitz and pseudo-contraction but not a strict pseudo-contraction.
Example 1.1 is due to Chidume and Mutangadura [9].

Example 1.2. Take $X = \mathbb{R}^1$ and define $T : X \to X$ by $Tx = 3x$. Then, T is a strict pseudo-contraction but not a nonexpansive mapping.

Construction of fixed points of nonexpansive mappings via Mann’s algorithm [10] has extensively been investigated in the literature; see, for example [10–16] and references therein. However we note that Mann’s iterations have only weak convergence even in a Hilbert space (see e.g., [17]). If T is a nonexpansive self-mapping of C, then Mann’s algorithm generates, initializing with an arbitrary $x_0 \in C$, a sequence according to the recursive manner

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n)Tx_n, \quad \forall n \geq 0,$$

(1.4)

where $\{\alpha_n\}_{n=0}^{\infty}$ is a real control sequence in the interval $(0, 1)$. If $T : C \to C$ is a nonexpansive mapping with a fixed point and if the control sequence $\{\alpha_n\}_{n=0}^{\infty}$ is chosen so that $\sum_{n=0}^{\infty} \alpha_n (1 - \alpha_n) = \infty$, then the sequence $\{x_n\}$ generated by Mann’s algorithm converges weakly to a fixed point of T. Reich [12] showed that the conclusion also holds good in the setting of uniformly convex Banach spaces with a Fréchet differentiable norm. It is well know that Reich’s result is on of the fundamental convergence results. Recently, Marino and Xu [18] extended Reich’s result [12] to strict pseudo-contraction mapping in the setting of Hilbert spaces. From a practical point of view, strict pseudo-contractions have more powerful applications than nonexpansive mappings do in solving inverse problems (see [19]). Therefore, it is important to develop theory of iterative methods for strict pseudo-contractions. Indeed, Browder and Petryshyn [20] prove that if the sequence $\{x_n\}$ is generated by the following:

$$x_{n+1} = \alpha_n x_n + (1 - \alpha_n)Tx_n, \quad n \geq 0,$$

(1.5)

for any starting point $x_0 \in C$, $\{\alpha_n\}$ is a constant sequence such that $\kappa < \alpha_n < 1$, $\{x_n\}$ converges weakly to a fixed point of strict pseudo-contraction T. Marino and Xu [18] extended the result of Browder and Petryshyn [20] to Mann’s iteration (1.4), they proved $\{x_n\}$ converges weakly to a fixed point of T, provided the control sequence $\{\alpha_n\}$ satisfies the conditions that $\kappa < \alpha_n < 1$, for all n and $\sum_{n=0}^{\infty} (\alpha_n - k)(1 - \alpha_n) = \infty$.

In order to obtain a strong convergence theorem for the Mann iteration method (1.4) to nonexpansive mapping, Nakajo and Takahashi [21] modified (1.4) by employing two closed convex sets that are created in order to form the sequence via metric projection so that strong convergence is guaranteed. Later, it is often referred as the hybrid algorithm or the CQ algorithm. After that, the hybrid algorithm have been studied extensively by many authors (see, for example [18, 22–27]).

A few years ago, Takahashi and Zembayashi [28, 29] proposed some hybrid methods to find the solution of fixed point problem and equilibrium problem in Banach spaces. Subsequently, many authors (see, e.g. [30–34] and references
therein.) have used the hybrid methods to solve fixed point problem and equilibrium problem.

Recently, Yao et al. [35] introduced the hybrid iterative algorithm which just involved one sequence of closed convex set for pseudo-contractive mapping in Hilbert spaces as follows:

Let C be a nonempty closed convex subset of a real Hilbert space H. Let $T : C \to C$ be a pseudo-contraction. Let $\{\alpha_n\}$ be a sequence in $(0, 1)$. Let $x_0 \in H$. For $C_1 = C$ and $x_1 = P_{C_1}(x_0)$, define a sequence $\{x_n\}$ of C as follows:

$$
\begin{align*}
&\begin{cases}
 y_n = (1 - \alpha_n)x_n + \alpha_nTz_n, \\
 C_{n+1} = \{v \in C_n : \|\alpha_n(I - T)y_n\|^2 \leq 2\alpha_n\langle x_n - v, (I - T)y_n \rangle\}, \\
 x_{n+1} = P_{C_{n+1}}(x_0).
 \end{cases}
\end{align*}
$$

(1.6)

Theorem 1.3 ([35]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let $T : C \to C$ be a L-Lipschitz pseudo-contraction such that $F(T) \neq \emptyset$. Assume the sequence $\{\alpha_n\} \subset [a, b]$ for some $a, b \in (0, \frac{1}{L+1})$. Then the sequence $\{x_n\}$ generated by (1.6) converges strongly to $P_{F(T)}(x_0)$.

Motivated and inspired by the above research work, in this paper, by employing (1.6) we create a hybrid algorithm to find the common element of fixed point set of a Lipshitz pseudo-contraction and the set of equilibrium problem. More precisely, we also provide some applications of the main theorems for finding the common element of the set of zeroes of a Lipshitz monotone mapping and the set of equilibrium problem in Hilbert spaces.

2 Preliminaries

Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$ and let C be a closed convex subset of H. For every point $x \in H$ there exists a unique nearest point in C, denoted by $P_C(x)$, such that

$$
\|x - P_Cx\| \leq \|x - y\| \quad \forall y \in C,
$$

where P_C is called the metric projection of H onto C. We know that P_C is a nonexpansive mapping. It is also known that H satisfies Opial’s condition, i.e., for any sequence $\{x_n\}$ with $x_n \rightharpoonup x$, the inequality

$$
\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|
$$

holds for every $y \in H$ with $y \neq x$.

For a given sequence $\{x_n\} \subset C$, let $\omega_w(x_n) = \{x : \exists x_{n_j} \rightharpoonup x\}$ denote the weak ω-limit set of $\{x_n\}$.

Now we collect some lemmas which will be used in the proof of the main result in the next section. We note that Lemmas 2.1 and 2.2 are well known.

Lemma 2.1. Let H be a real Hilbert space. There holds the following identities
1. \[\|x - y\|^2 = \|x\|^2 - \|y\|^2 - 2 \langle x - y, y \rangle \quad \forall x, y \in H. \]

2. \[\|\lambda x + (1 - \lambda)y\|^2 = \lambda \|x\|^2 + (1 - \lambda)\|y\|^2 - \lambda(1 - \lambda)\|x - y\|^2 \quad \forall x, y \in H \text{ and } \lambda \in [0, 1] \]

Lemma 2.2. Let \(C \) be a closed convex subset of real Hilbert space \(H \). Given \(x \in H \) and \(z \in C \). Then \(z = P_C x \) if and only if there holds the relation

\[\{x - z, y - z\} \leq 0 \quad \forall y \in C. \]

For solving the equilibrium problem for a bifunction \(F : C \times C \to \mathbb{R} \), let us assume that \(F \) satisfies the following condition:

(A1) \(F(x, x) = 0 \) for all \(x \in C \);

(A2) \(F \) is monotone, i.e., \(F(x, y) + F(y, x) \leq 0 \) for all \(x, y \in C \);

(A3) for each \(x, y, z \in C \), \(\lim_{t \downarrow 0} F(tz + (1 - t)x, y) \leq F(x, y) \);

(A4) for each \(x \in C \), \(y \mapsto F(x, y) \) is convex and lower semicontinuous.

The following lemma appears implicitly in [1].

Lemma 2.3 ([1]). Let \(C \) be a nonempty closed convex subset of a Hilbert space \(H \) and let \(F \) be a bifunction of \(C \times C \) into \(\mathbb{R} \) satisfying (A1) – (A4). Let \(r > 0 \) and \(x \in H \). Then, there exists \(z \in C \) such that

\[F(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \geq 0 \quad \forall y \in C. \]

The following lemma was also given in [5].

Lemma 2.4 ([5]). Assume that \(F : C \times C \to \mathbb{R} \) satisfying (A1) – (A4). For \(r > 0 \) and \(x \in H \), define a mapping \(T_r : H \to C \) as follows:

\[T_r x = \left\{ z \in C : F(z, y) + \frac{1}{r} \langle y - z, z - x \rangle \geq 0, \forall y \in C \right\} \]

for all \(x \in H \). Then, the following hold:

1. \(T_r \) is single-valued;
2. \(T_r \) is firmly nonexpansive, i.e., for any \(x, y \in H \), \(\|T_r x - T_r y\|^2 \leq \langle T_r x - T_r y, x - y \rangle \);
3. \(F(T_r) = EP(F) \);
4. \(EP(F) \) is closed and convex.

The following lemma provides some useful properties of firmly nonexpansive mapping.

Lemma 2.5. \(T \) is firmly nonexpansive if and only if \((I - T) \) is firmly nonexpansive.
Proof. Suppose first that T is firmly nonexpansive. We want to show that $(I - T)$ is firmly nonexpansive. Consider,

$$\|(I - T)x - (I - T)y\|^2 = \|(Tx - Ty) - (x - y)\|^2$$

$$= \|Tx - Ty\|^2 - 2(Tx - Ty, x - y) + \|x - y\|^2$$

$$\leq -\langle Tx - Ty, x - y \rangle + \|x - y\|^2$$

$$= \langle (I - T)x - (I - T)y, x - y \rangle.$$

Conversely, assume that $(I - T)$ is firmly nonexpansive. Consider,

$$\|Tx - Ty\|^2 = \|(I - T)x - (I - T)y - (x - y)\|^2$$

$$= \|(I - T)x - (I - T)y\|^2 - 2\langle (I - T)x - (I - T)y, x - y \rangle + \|x - y\|^2$$

$$\leq -\langle (I - T)x - (I - T)y, x - y \rangle + \|x - y\|^2$$

$$= \langle Tx - Ty, x - y \rangle.$$

\[\square\]

Lemma 2.6 ([36]). Let H be a real Hilbert space, C a closed convex subset of H and $T : C \to C$ a continuous pseudo-contractive mapping, then

1. $F(T)$ is closed convex subset of C.

2. $I - T$ is demiclosed at zero, i.e., if $\{x_n\}$ is a sequence in C such that $x_n \to z$ and $(I - T)x_n \to 0$, then $(I - T)z = 0$.

Lemma 2.7 ([37]). Let C be a closed convex subset of H. Let $\{x_n\}$ be a sequence in H and $u \in H$. Let $q = P_Cu$. If $\{x_n\}$ is such that $\omega_u(x_n) \subset C$ and satisfies the condition

$$\|x_n - u\| \leq \|u - q\| \quad \forall n.$$

Then $x_n \to q$.

3 Main result

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H, $T : C \to C$ be L-Lipschitz pseudo-contraction and F be a bifunction of $C \times C$ into \mathbb{R} satisfying (A1) – (A4) with $F := F(T) \cap EP(F) \neq \emptyset$. Let $x_0 \in H$. For $C_1 = C$ and $x_1 = P_{C_1}(x_0)$, define a sequence $\{x_n\}$ of C as follows:

$$y_n = (1 - \alpha_n)x_n + \alpha_nTz_n,$$

$$z_n = (1 - \beta_n)x_n + \beta_nu_n,$$

$$u_n \in C \text{ such that } F(u_n, y) + \frac{1}{\tau_n}(y - u_n, u_n - x_n) \geq 0,$$

$$C_{n+1} = \{v \in C_n : \|\alpha_n(I - T)y_n\|^2 + (1 - 2\beta_n)\|x_n - u_n\|^2$$

$$\leq 2\alpha_n\langle x_n - v, (I - T)y_n \rangle + 2\langle x_n - v, (I - T)z_n \rangle + (x_n - u_n)$$

$$+ 2\alpha_n\beta_nL\|x_n - u_n\|\|y_n - x_n + \alpha_n(I - T)y_n\|\},$$

$$x_{n+1} = P_{C_{n+1}}(x_0).$$

(3.1)
Assume the sequence \(\{\alpha_n\}, \{\beta_n\} \) and \(\{r_n\} \) be such that

1. \(0 < a \leq \alpha_n \leq b < \frac{1}{2} \) for all \(n \in \mathbb{N} \),
2. \(0 < \beta_n \leq 1 \) for all \(n \in \mathbb{N} \) with \(\lim_{n \to \infty} \beta_n = 0 \),
3. \(r_n > 0 \) for all \(n \in \mathbb{N} \) with \(\liminf_{n \to \infty} r_n > 0 \).

Then \(\{x_n\} \) converges strongly to \(P_\Gamma(x_0) \).

Proof. By Lemma 2.6 (i) and Lemma 2.4 (iv), we see that \(F(T) \) and \(EP(F) \) are closed and convex respectively, then \(\tilde{F} \) is also. Hence \(P_\Gamma \) is well defined. Next, we will prove by induction that \(\tilde{F} \subset C_n \) for all \(n \in \mathbb{N} \). Note that \(\tilde{F} \subset C = C_1 \). Assume that \(\tilde{F} \subset C_k \) holds for some \(k \geq 1 \). Let \(p \in \tilde{F} \), thus \(p \in C_k \). We observe that

\[
\|x_k - p - \alpha_k(I - T)y_k\|^2
= \|x_k - p\|^2 - \|\alpha_k(I - T)y_k\|^2 - 2\alpha_k\langle(I - T)y_k, x_k - p - \alpha_k(I - T)y_k\rangle

\leq \|x_k - p\|^2 - \|\alpha_k(I - T)y_k\|^2 - 2\alpha_k\langle(I - T)y_k, x_k - y_k - \alpha_k(I - T)y_k\rangle

= \|x_k - p\|^2 - \|(x_k - y_k) + (y_k - x_k + \alpha_k(I - T)y_k)\| - 2\alpha_k\langle(I - T)y_k, x_k - y_k - \alpha_k(I - T)y_k\rangle

+ 2\|x_k - y_k - \alpha_k(I - T)y_k, x_k - y_k - \alpha_k(I - T)y_k\|.
\] (3.2)

Consider the last term of (3.2) we obtain

\[
\langle x_k - y_k - \alpha_k(I - T)y_k, y_k - x_k + \alpha_k(I - T)y_k\rangle
\]

\[
\leq \alpha_k\langle x_k - Tz_k - (I - T)y_k, y_k - x_k + \alpha_k(I - T)y_k\rangle
\]

\[
= \alpha_k\langle x_k - Tz_k - (I - T)y_k, y_k - x_k + \alpha_k(I - T)y_k\rangle
\]

\[
= \alpha_k\langle(I - T)x_k - (I - T)y_k, y_k - x_k + \alpha_k(I - T)y_k\rangle
\]

\[
+ \langle Tz_k - Tz_k, y_k - x_k + \alpha_k(I - T)y_k\rangle
\]

\[
\leq \alpha_k(L + 1)\|x_k - y_k\|\|y_k - x_k + \alpha_k(I - T)y_k\|
\]

\[
+ \alpha_kL\|x_k - z_k\|\|y_k - x_k + \alpha_k(I - T)y_k\|
\]

\[
\leq \frac{\alpha_k(L + 1)}{2}(\|x_k - y_k\|^2 + \|y_k - x_k + \alpha_k(I - T)y_k\|^2)
\]

\[
+ \alpha_k\beta_kL\|x_k - u_k\|\|y_k - x_k + \alpha_k(I - T)y_k\|.
\] (3.3)
Substituting (3.3) into (3.2), we obtain
\[
\|x_k - p - \alpha_k(I - T)y_k\|^2 \\
\leq \|x_k - p\|^2 - \|x_k - y_k\|^2 - \|y_k - x_k + \alpha_k(I - T)y_k\|^2 \\
+ \alpha_k(L + 1)(\|x_k - y_k\|^2 + \|y_k - x_k + \alpha_k(I - T)y_k\|^2) \\
+ 2\alpha_k\beta_k \|x_k - u_k\| \|y_k - x_k + \alpha_k(I - T)y_k\| \\
\leq \|x_k - p\|^2 + 2\alpha_k\beta_k L \|x_k - u_k\| \|y_k - x_k + \alpha_k(I - T)y_k\|.
\] (3.4)

Notice that
\[
\|x_k - p - \alpha_k(I - T)y_k\|^2 = \|x_k - p\|^2 - 2\alpha_k \langle x_k - p, (I - T)y_k \rangle + \|\alpha_k(I - T)y_k\|^2.
\] (3.5)

Therefore, from (3.4) and (3.5), we get
\[
\|\alpha_k(I - T)y_k\|^2 \leq 2\alpha_k \langle x_k - p, (I - T)y_k \rangle + 2\alpha_k\beta_k L \|x_k - u_k\| \|y_k - x_k + \alpha_k(I - T)y_k\|.
\] (3.6)

On the other hand, by using Lemma 2.5 we obtain
\[
\|x_k - p - \beta_k(I - T_{r_k})z_k\|^2 \\
= \|x_k - p\|^2 - \|\beta_k(I - T_{r_k})z_k\|^2 - 2\beta_k \langle (I - T_{r_k})z_k, x_k - p - \beta_k(I - T_{r_k})z_k \rangle \\
= \|x_k - p\|^2 - \|\beta_k(I - T_{r_k})z_k\|^2 - 2\beta_k \langle (I - T_{r_k})z_k - (I - T_{r_k})p, z_k - p \rangle \\
- 2\beta_k \langle (I - T_{r_k})z_k, x_k - z_k - \beta_k(I - T_{r_k})z_k \rangle \\
\leq \|x_k - p\|^2 - \|\beta_k(I - T_{r_k})z_k\|^2 - 2\beta_k \langle (I - T_{r_k})z_k, x_k - z_k - \beta_k(I - T_{r_k})z_k \rangle \\
= \|x_k - p\|^2 - \|\beta_k(I - T_{r_k})z_k\|^2 \\
+ \langle \beta_k(I - T_{r_k})z_k \rangle \|x_k - z_k\|^2 - \|x_k - z_k - \beta_k(I - T_{r_k})z_k\|^2 \\
= \|x_k - z_k\|^2 + 2\|x_k - z_k, z_k - p\| + \|z_k - p\|^2 - \|x_k - z_k\|^2 \\
+ \|\beta_k(I - T_{r_k})z_k\|^2 \\
= 2\|x_k - z_k, z_k - x_k + (x_k - p)\| + \|\beta_k\| \|x_k - p\| + \beta_k \|T_{r_k}x_k - p\| \\
+ \|\beta_k(I - T_{r_k})z_k\|^2 \\
\leq 2\|x_k - p, \beta_k(I - T_{r_k})z_k\| - 2\|x_k - z_k\|^2 + \beta_k \|T_{r_k}x_k - p\|^2 \\
- \beta_k \|x_k - T_{r_k}x_k\|^2 + \|x_k - p\|^2 + \beta_k^2 \|x_k - z_k\|^2 \\
\leq 2\|x_k - p, \beta_k(I - T_{r_k})z_k\| + \beta_k \|x_k - p\|^2 + \|x_k - p\|^2 \\
- \beta_k \|x_k - T_{r_k}x_k\|^2 + \beta_k^2 \|I - T_{r_k}\| x_k\|^2 \\
= 2\|x_k - p, \beta_k(I - T_{r_k})z_k\| + \|x_k - p\|^2 - \beta_k \|x_k - u_k\|^2 \\
+ \beta_k^2 \|x_k - u_k\|^2.
\] (3.7)

Notice that
\[
\|x_k - p - \beta_k(I - T_{r_k})z_k\|^2 = \|x_k - p\|^2 - 2\beta_k \langle x_k - p, (I - T_{r_k})z_k \rangle + \beta_k^2 \|I - T_{r_k}\| z_k\|^2.
\] (3.8)
Combining (3.7) and (3.8) and then it implies that
\[\beta_k(1 - \beta_k)\|x_k - u_k\|^2 \leq \beta_k(x_k - p, (I - T_{r_k})z_k + (x_k - u_k)) + \beta_k^2\|x_k - u_k\|^2 \]
\[- \beta_k^2\|(I - T_{r_k})z_k\|^2 \]
\[\leq 2\beta_k(x_k - p, (I - T_{r_k})z_k + (x_k - u_k)) + \beta_k^2\|x_k - u_k\|^2. \]

Since \(\beta_n > 0 \) for all \(n \), so we get
\[(1 - 2\beta_k)\|x_k - u_k\|^2 \leq 2(x_k - p, (I - T_{r_k})z_k + (x_k - u_k)). \]
(3.9)

It follows form (3.6) and (3.9) we obtain
\[\|\alpha_k(I - T)y_k\|^2 + (1 - 2\beta_k)\|x_k - u_k\|^2 \]
\[\leq 2\alpha_k(x_k - p, (I - T)y_k) + 2(x_k - p, (I - T_{r_k})z_k + (x_k - u_k)) \]
\[+ 2\alpha_k\beta_k\|x_k - u_k\||y_k - x_k + \alpha_k(I - T)y_k|.\]

Therefore, \(p \in C_{k+1} \). By mathematical induction, we have \(\bar{F} \subset C_n \) for all \(n \in \mathbb{N} \).
It is easy to check that \(C_n \) is closed and convex and then \{\(x_n \)\} is well define. From \(x_n = P_{C_n}(x_0) \), we have \((x_0 - x_n, x_n - y) \geq 0 \) for all \(y \in C_n \). Using \(\bar{F} \subset C_n \), we also have \((x_0 - x_n, x_n - u) \geq 0 \) for all \(u \in \bar{F} \). So, for \(u \in \bar{F} \), we have
\[0 \leq (x_0 - x_n, x_n - u) = (x_0 - x_n, x_n - x_0 + x_0 - u) \]
\[= -\|x_0 - x_n\|^2 + (x_0 - x_n, x_0 - u) \]
\[\leq -\|x_0 - x_n\|^2 + \|x_0 - x_n\||x_0 - u|. \]

Hence,
\[\|x_0 - x_n\| \leq \|x_0 - u\| \quad \text{for all} \quad u \in \bar{F}. \]
(3.10)

This implies that \{\(x_n \)\} is bounded and then \{\(y_n \), \{\(Ty_n \), \{\(z_n \), \{\(T_{r_n}z_n \} \} \} \} \ and \{\(u_n \)\} are also.

From \(x_n = P_{C_n}(x_0) \) and \(x_{n+1} = P_{C_{n+1}}(x_0) \in C_{n+1} \subset C_n \), we have
\[(x_0 - x_n, x_n - x_{n+1}) \geq 0. \]
(3.11)

Hence,
\[0 \leq (x_0 - x_n, x_n - x_{n+1}) = (x_0 - x_n, x_n - x_0 + x_0 - x_{n+1}) \]
\[= -\|x_0 - x_n\|^2 + (x_0 - x_n, x_0 - x_{n+1}) \]
\[\leq -\|x_0 - x_n\|^2 + \|x_0 - x_n\||x_0 - x_{n+1}|, \]
and therefore \(\|x_0 - x_n\| \leq \|x_0 - x_{n+1}\| \), which implies that \(\lim_{n \to \infty} \|x_n - x_0\| \) exists. From Lemma 2.1 and (3.11), we obtain
\[\|x_{n+1} - x_n\|^2 = \|x_{n+1} - x_0\| - (x_n - x_0)|^2 \]
\[= \|x_{n+1} - x_0\|^2 - \|x_n - x_0\|^2 - 2(x_{n+1} - x_n, x_n - x_0) \]
\[\leq \|x_{n+1} - x_0\|^2 - \|x_n - x_0\|^2 \to 0 \quad \text{as} \quad n \to \infty. \]
Since \(x_{n+1} \in C_{n+1} \subset C_n \), we have
\[
\|\alpha_n(I-T)y_n\|^2 + (1 - 2\beta_n)\|x_n - u_n\|^2 \\
\leq 2\alpha_n\langle x_n - x_{n+1}, (I-T)y_n \rangle + 2\langle x_n - x_{n+1}, (I-T_{r_n})z_n + (x_n - u_n) \rangle \\
+ 2\alpha_n\beta_nL\|x_n - u_n\|\|y_n - x_n + \alpha_n(I-T)y_n\| \
\to 0 \quad \text{as} \quad n \to \infty.
\]

Therefore, we obtain
\[
\|y_n - Ty_n\| \to 0 \quad \text{and} \quad \|x_n - u_n\| \to 0 \quad \text{as} \quad n \to \infty. \quad (3.12)
\]

We note that
\[
\|x_n - Tx_n\| \leq \|x_n - y_n\| + \|y_n - Ty_n\| + \|Ty_n - Tx_n\| \\
\leq (L + 1)\|x_n - y_n\| + \|y_n - Ty_n\| \\
\leq \alpha_n(L + 1)\|x_n - Ty_n\| + \|Ty_n - Ty_n\| \quad (3.13)
\]

that is,
\[
\|x_n - Tx_n\| \leq \frac{\alpha_n\beta_nL(L + 1)}{1 - \alpha_n(L + 1)}\|x_n - u_n\| + \frac{1}{1 - \alpha_n(L + 1)}\|y_n - Ty_n\| \
\to 0 \quad \text{as} \quad n \to \infty.
\]

Next, we will show that
\[
\omega_w(x_n) \subset \bar{F}. \quad (3.14)
\]

Since \(\{x_n\} \) is bounded, the reflexivity of \(H \) guarantees that \(\omega_w(x_n) \neq \emptyset \). Let \(p \in \omega_w(x_n) \), then there exists a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) such that \(x_{n_k} \to p \) and by Lemma 2.6 (ii) we have \(p \in F(T) \). On the other hand, since \(\|x_n - u_n\| \to 0 \) and \(x_{n_k} \to p \), so we have \(u_{n_k} \to p \). It follows from \(u_{n_k} = T_{r_{n_k}}x_{n_k} \) and (A2) that
\[
\frac{1}{r_{n_k}}\langle y - u_{n_k}, u_{n_k} - x_{n_k} \rangle \geq F(y, u_{n_k}) \quad \text{for all} \quad y \in C.
\]

Replacing \(n \) by \(n_k \), we have
\[
\left\langle y - u_{n_k}, \frac{u_{n_k} - x_{n_k}}{r_{n_k}} \right\rangle \geq F(y, u_{n_k}).
\]

By using (A4) and (3), we obtain \(0 \geq F(y, p) \) for all \(y \in C \). So, from (A1) and (A4) we have
\[
0 = F(y_t, y_t) = F(y_t, ty + (1 - t)p) \leq tF(y_t, y) + (1 - t)F(y_t, p) \leq tF(y_t, y).
\]

Dividing by \(t \), we have
\[
F(y_t, y) \geq 0 \quad \text{for all} \quad y \in C.
\]

From (A3) we have \(0 \leq \lim_{t \to 0} F(y_t, y) = \lim_{t \to 0} F(ty + (1 - t)p, y) \leq F(p, y) \) for all \(y \in C \), and hence \(p \in EP(F) \). So, \(p \in F(T) \cap EP(F) = \bar{F} \) and then we have (3.14). Therefore, by inequality (3.10) and Lemma 2.7, we obtain \(\{x_n\} \) converges strongly to \(P_{\bar{F}}(x_0) \). This completes the proof. \(\square \)
Corollary 3.2 (Yao et al. [35, Theorem 3.1]). Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \). Let \(T : C \to C \) be \(L \)-Lipschitz pseudo-contraction such that \(F(T) \neq \emptyset \). Assume the sequence \(\{\alpha_n\} \) be such that \(0 < \alpha_n \leq b < \frac{1}{2L} \) for all \(n \). Then the sequence \(\{x_n\} \) generated by (1.6) converges strongly to \(P_{F(T)}(x_0) \).

Proof. Put \(F(x, y) = 0 \) for all \(x, y \in C \) and \(r_n = 1 \) for all \(n \geq 1 \) in Theorem 3.1. Then, \(T_n = P_{C} \) for all \(n \geq 1 \). So, \(u_n = P_{C}x_n \) for all \(n \geq 1 \). Note that \(x_1 = P_{C}x_0 \). Since \(x_n = P_{C_n}x_0 \in C_n \subseteq C \) for all \(n \geq 1 \), so we have \(u_n = x_n \) and then \(z_n = x_n \) for all \(n \geq 1 \). Thus \((I - T_n)z_n = x_n - P_Cx_n = 0 \) for all \(n \geq 1 \). For this reason, (1.6) is a special case of (3.1). Applying Theorem 3.1, we have the desired result.

Recall that a mapping \(A \) is said to be monotone, if \(\langle x - y, Ax - Ay \rangle \geq 0 \) for all \(x, y \in H \) and inverse strongly monotone if there exists a real number \(\gamma > 0 \) such that \(\langle x - y, Ax - Ay \rangle \geq \gamma \|Ax - Ay\|^2 \) for all \(x, y \in H \). For the second case \(A \) is said to be \(\gamma \)-inverse strongly monotone. It follows immediately that if \(A \) is \(\gamma \)-inverse strongly monotone, then \(A \) is monotone and Lipschitz continuous, that is, \(\|Ax - Ay\| \leq \frac{1}{\gamma}\|x - y\| \). The pseudo-contractive mapping and strictly pseudo-contractive mapping are strongly related to the monotone mapping and inverse strongly monotone mapping, respectively. It is well known that

1. \(A \) is monotone \(\iff T := (I - A) \) is pseudo-contractive.
2. \(A \) is inverse strongly monotone \(\iff T := (I - A) \) is strictly pseudo-contractive.

Indeed, for (ii), we notice that the following equality always holds in a real Hilbert space

\[
\| (I - A)x - (I - A)y \|^2 = \|x - y\|^2 + \|Ax - Ay\|^2 - 2\langle x - y, Ax - Ay \rangle \forall x, y \in H, \quad (3.15)
\]

With out loss of generality we can assume that \(\gamma \in (0, \frac{1}{2}] \) and then it yields

\[
\langle x - y, Ax - Ay \rangle \geq \gamma \|Ax - Ay\|^2
\]

\(\iff \langle x - y, Ax - Ay \rangle \leq -2\gamma \|Ax - Ay\|^2 \]

\(\iff \| (I - A)x - (I - A)y \|^2 \leq \|x - y\|^2 + (1 - 2\gamma) \|Ax - Ay\|^2 \) (via (3.15))

\(\iff \|TxTy\|^2 \leq \|x - y\|^2 + \kappa \| (I - T)x - (I - T)y \|^2 \)

(\text{where } T := (I - A) \text{ and } \kappa := 1 - 2\gamma).

Corollary 3.3. Let \(A : H \to H \) be \(L \)-Lipschitz monotone mapping and \(F \) be a bifunction of \(C \times C \) into \(\mathbb{R} \) satisfying \((A1) - (A4) \) which \(A^{-1}(0) \cap EP(F) \neq \emptyset \). Let \(x_0 \in H \). For \(C_1 = C \) and \(x_1 = P_{C_1}(x_0) \), define a sequence \(\{x_n\} \) of \(C \) as follows:
\begin{align*}
 y_n &= x_n - \alpha_n (x_n - z_n) - \alpha_n Az_n, \\
 z_n &= (1 - \beta_n) x_n + \beta_n u_n, \\
 u_n &\in C \text{ such that } F(u_n, y) + \frac{1}{r_n} (y - u_n, u_n - x_n) \geq 0,
\end{align*}

\begin{equation}
C_{n+1} = \{ v \in C_n : \| \alpha_n Ay_n \| + 2 \| x_n - u_n \| \\
\quad \leq 2 \alpha_n (x_n - v, Ay_n) + 2 \langle x_n - v, (I - T_{r_n}) z_n + (x_n - u_n) \rangle \\
\quad + 2 \| \beta_n L \| \| x_n - u_n \| \| y_n - x_n + \alpha_n Ay_n \| \},
\end{equation}

\begin{equation}
x_{n+1} = P_{C_{n+1}}(x_0).
\end{equation}

Assume $0 < a \leq \alpha_n \leq b < \frac{1}{L + 2} < 1$ for all $n \in \mathbb{N}$, \{\beta_n\} and \{r_n\} be as in Theorem 3.1. Then \{x_n\} converges strongly to $P_{A^{-1}(0) \cap EP(F)}(x_0)$.

\textbf{Proof.} Let $T := (I - A)$. Then T is pseudo-contractive and $(L + 2)$-Lipschitz. Hence, it follows from Theorem 3.1, we have the desired result. \hfill \square

\textbf{Acknowledgement :} The second author is supported by Naresuan University.

\section*{References}

(Received 1 June 2011)
(Accepted 15 August 2011)