The Theory of the Feasibility Problems and Fixed Point Problems of Nonlinear Mappings

Sirawit Premjitpraphan and Atid Kangtunyakarn

Department of Mathematics, Faculty of Science
King Mongkut’s Institute of Technology Ladkrabang
Bangkok 10520, Thailand

e-mail: spreamjitpraphan@gmail.com (S. Premjitpraphan)
beawrock@hotmail.com (A. Kangtunyakarn)

Keywords: the split feasibility problem; fixed point problem; \(L\)-Lipschitzian; strongly positive.

2010 Mathematics Subject Classification: 47H09; 47H10.

0This research was supported by the Research Administration Division of King Mongkut’s Institute of Technology Ladkrabang.
1Corresponding author.

Copyright © 2019 by the Mathematical Association of Thailand. All rights reserved.
1 Introduction

The split feasibility problem has become the inspiration in pure and applied mathematics. It attracted the author’s attention due to its application in signal processing. The problem was introduced by Censor and Elfving (1994) ([1]).

Let C and Q be nonempty closed convex subsets of real Hilbert space H_1 and H_2, respectively.

The split feasibility problem (SFP) was formulated so as to find a point u^* satisfy the properties:

$$u^* \in C \text{ and } Au^* \in Q, \quad (1.1)$$

where $A : H_1 \to H_2$ is a bounded linear operator.

The split common fixed point problem (SCFP) was formulated such that

$$u^* \in F(T) \text{ and } Au^* \in F(S), \quad (1.2)$$

where $F(T)$ and $F(S)$ are fixed point sets of the operators $T : H_1 \to H_1$ and $S : H_2 \to H_2$.

Recently, the study of the split common fixed point problem (SCFP) has become popular among mathematicians. The problem, first analysed by Censor and Segal ([2]), is a natural extension of the SFP and the convex feasibility problem.

In ([3]) Hamdi, Liou, Yao and Luo proved strong convergence theorem as following algorithm:

$$x_{n+1} = (1 - \beta_n)u_n + \beta_n T((1 - \gamma_n)u_n + \gamma_n Tu_n)$$

for all $n \in \mathbb{N}$,

where $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\xi_n\}$ and $\{\eta_n\}$ are real sequences in $[0, 1]$. $A : H_1 \to H_2$ is a bounded linear operator with its adjoint A^*, $f : C \to H_1$ is ρ-contraction, B is strongly positive bounded linear operator on H_1, $S : Q \to Q$ is an L_1-Lipschitzian quasi-pseudo-contractive operator with $L_1 > 1$, $T : C \to C$ is an L_2-Lipschitzian quasi-pseudo-contractive operator with $L_2 > 1$. They showed that the sequence $\{x_n\}$ converges strongly to the unique fixed point of the contraction mapping $P_T (\gamma f + I - B)$.

The purpose of this paper was to study the following split feasibility problem and fixed point problem:

$$\text{Find } u^* \in C \cap F(T) \text{ and } Au^* \in Q \cap F(S). \quad (1.3)$$

The set of solution of (1.3) is denoted by Γ, that is,

$$\Gamma = \{x \mid x \in C \cap F(T), Ax \in Q \cap F(S)\}.$$
It is immediately evident that (1.3) can be derived from SFP(1.1) and SCFP(1.2).

In this paper, we’re motivated and inspired by Hamdi, Liou, Yao and Luo (3), we modified the split feasibility problem and fixed point problem by Hamdi, Liou, Yao and Luo (3) and used the concept from Lemma 2.11. we will introduce a new iteration to approach the solution of (1.3). The proof of the strong convergence result is given later in the paper.

2 Preliminaries

Throughout this paper, we always assume that H be a real Hilbert space with the inner product $\langle \cdot, \cdot \rangle$ and the norm $\|\cdot\|$. Let C be a nonempty closed convex subset of H. Using the notations of weak and strong convergence by $\overset{\text{w}}{\rightharpoonup}$, $\overset{\text{s}}{\rightharpoonup}$ respectively.

Recall that a mapping T of C into itself is called nonexpansive if

$$\|Tx - Ty\| \leq \|x - y\|,$$

for all $x, y \in C$. The set of all elements of fixed point of a mapping T is denoted by $F(T) = \{x \in C : Tx = x\}$. Goebel and Kirk (4) showed that $F(T)$ is closed and convex. In a real Hilbert space H, it is well known that

$$\|\lambda x + (1 - \lambda)y\|^2 = \lambda \|x\|^2 + (1 - \lambda) \|y\|^2 - \lambda(1 - \lambda) \|x - y\|^2,$$

and

$$\|x + y\|^2 = \|x\|^2 + 2 \langle x, y \rangle + \|y\|^2$$

for all $x, y \in H$.

Lemma 2.1. [5] Let H be a real Hilbert space. Then

$$\|x + y\|^2 \leq \|x\|^2 + 2 \langle y, x + y \rangle, \quad \forall x, y \in H.$$

Definition 2.2. An operator A is a strongly positive bounded linear operator on H if there is a constant $\bar{\gamma} > 0$ with the property

$$\langle Ax, x \rangle \geq \bar{\gamma} \|x\|^2, \quad \forall x \in H.$$

Definition 2.3. An operator $A : C \rightarrow H$ is called \mathcal{L}-Lipschitzian if

$$\|Ax - Ay\| \leq \mathcal{L} \|x - y\|, \quad \forall x, y \in C$$

for some constant $\mathcal{L} > 0$. If $\mathcal{L} \in [0, 1]$, then A is called \mathcal{L}-contraction.

Definition 2.4. An operator $A : C \rightarrow C$ is called pseudo-contractive if

$$\langle Ax - Ay, x - y \rangle \leq \|x - y\|^2, \quad \forall x, y \in C.$$
Definition 2.5. An operator $A : C \rightarrow C$ is called quasi-pseudo-contractive if
\[\|Ax - y\|^2 \leq \|x - y\|^2 + \|Ax - x\|^2 \]
for all $x \in C$ and $y \in F(A)$.

Definition 2.6. An operator $A : C \rightarrow H$ is called α-inverse strongly monotone if there exists a positive real number $\alpha > 0$ such that
\[\langle Ax - Ay, x - y \rangle \geq \alpha \|Ax - Ay\|^2, \quad \forall x, y \in C. \]

It is obvious that any α-inverse strongly monotone mapping A is $\frac{1}{\alpha}$-Lipschitzian.

Definition 2.7. An operator $A : C \rightarrow C$ is called firmly nonexpansive if
\[\|Ax - Ay\|^2 \leq \|x - y\|^2 - \|(I - A)x - (I - A)y\|^2, \quad \forall x, y \in C. \]

Definition 2.8. An operator A is said to be demiclosed if $\forall x_n \rightharpoonup \bar{u}$ and $A(x_n) \rightarrow u$ imply that $A(\bar{u}) = u$.

Lemma 2.9. [6] Let $\{Q_n\} \subset [0, +\infty], \{v_n\} \subset [0, 1]$ and $\{\eta_n\}$ be three real number sequences. Suppose that $\{Q_n\}, \{v_n\}$ and $\{\eta_n\}$ satisfy the following three conditions:

(i) $Q_{n+1} \leq (1 - v_n)Q_n + \eta_nv_n$,

(ii) $\sum_{n=1}^{\infty} v_n = \infty$,

(iii) $\limsup_{n \to \infty} \eta_n \leq 0$ or $\sum_{n=1}^{\infty} |\eta_nv_n| < \infty$.

Then, $\lim_{n \to \infty} Q_n = 0$.

Lemma 2.10. [7] Let \(\{\rho_n\} \) be a sequences of real numbers. Assume that there exists a subsequence $\{\rho_{n_k}\}$ of $\{\rho_n\}$ such that $\rho_{n_k} \leq \rho_{n_k+1}$ for all $k \geq 0$. For every $n \geq N_0$, define an integer sequence $\{\tau(n)\}$ as
\[\tau(n) = \max \{i \leq n : \rho_{n_i} < \rho_{n_i+1}\}. \]
Then $\tau(n) \to \infty$ as $n \to \infty$ and
\[\max \{\rho_{\tau(n)}, \rho_n\} \leq \rho_{\tau(n)+1}, \]
for all $n \geq N_0$.

Lemma 2.11. [8] Let C be a nonempty closed convex subset of a real Hilbert space H. For every $i = 1, 2, ..., N$, let A_i be a strongly positive linear bounded operator on a Hilbert space H with coefficient $\gamma_i > 0$ and $\bar{\gamma} = \min_{i=1,2,...,N} \gamma_i$. Let $\{a_i\}_{i=1}^{N} \subset (0, 1)$ with $\sum_{i=1}^{N} a_i = 1$. Then the following properties hold:
Proposition 2.12. Let H be a real Hilbert space. Let $U : H \to H$ be an L-Lipschitzian quasi-pseudo-contractive operator. Then we have
\[\|U((1 - \eta)x + \eta \xi) - u^*\|^2 \leq \|x - u^*\|^2 + (1 - \eta)\|x - U((1 - \eta)x + \eta \xi)\|^2, \]
and the operator $\xi U((1 - \xi)I + \xi U)$ is quasi-nonexpansive when $0 < \xi < \eta < \frac{1}{\sqrt{1 + \xi^2} + 1}$, that is,
\[\|((1 - \xi)x + \xi U((1 - \xi)x + \xi U)) - u^*\| \leq \|x - u^*\| \]
for all $x \in H$ and $u^* \in F(U)$.

Proposition 2.13. Let H be a real Hilbert space. Let $U : H \to H$ be an L-Lipschitzian quasi-pseudo-contractive operator with $L > 1$. Assume that $\Gamma \neq \emptyset$ and let \{x_n\} be a sequences generated by $x_0 \in H_1$

\[
\begin{cases}
z_n = P_Q A x_n, \\
v_n = (1 - \xi_n) z_n + \xi_n S ((1 - \eta_n) z_n + \eta_n S z_n), \\
y_n = \alpha_n \gamma f(x_n) + (I - \alpha_n \sum_{i=1}^{N} a_i D_i)(x_n - \delta A^*(Ax_n - v_n)), \\
u_n = P_C y_n, \\
x_{n+1} = (1 - \beta_n) u_n + \beta_n T((1 - \gamma_n) u_n + \gamma_n T u_n), \quad \text{for } n \geq 1,
\end{cases}
\]

The parameters \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\xi_n\} and \{\eta_n\} are real sequences in $[0, 1]$, δ and γ are two positive constants.

3 Main Results

Theorem 3.1. Let H_1 and H_2 are two real Hilbert space, let $C \subseteq H_1$ and $Q \subseteq H_2$ are two nonempty closed convex sets. Let $A : H_1 \to H_2$ is a bounded linear operator with its adjoint A^*, D_i is strongly positive bounded linear operator on H_1 with coefficient $\gamma_i > 0$ and $\bar{\gamma} = \min_{i=1, 2, \ldots, N} \gamma_i$, $f : C \to H_1$ is a ρ-contraction, $S : Q \to Q$ is an L_1-Lipschitzian quasi-pseudo-contractive operator with $L_1 > 1$, $T : C \to C$ is an L_2-Lipschitzian quasi-pseudo-contractive operator with $L_2 > 1$. Assume that $\Gamma \neq \emptyset$ and let \{x_n\} be a sequences generated by $x_0 \in H_1$.
We use Γ to denote the set of solution of problem (1.3), that is,
$$

\Gamma = \{ x | x \in C \cap F(T), Ax \in Q \cap F(S) \}.

Suppose that $T - I$ and $S - I$ are demiclosed at 0. Assume that the following conditions are satisfied:

(i) \(\lim_{n \to \infty} \alpha_n = 0 \) and \(\sum_{n=1}^{\infty} \alpha_n = \infty \),

(ii) \(0 < a_1 < \xi_n < b_1 < \eta_n < c_1 < \frac{1}{\sqrt{1 + L_1^2 + 1}} \),

(iii) \(0 < a_2 < \beta_n < b_2 < \gamma_n < c_2 < \frac{1}{\sqrt{1 + L_2^2 + 2}} \),

(iv) \(0 < \delta, \gamma < \|A\|^2 \) and \(\bar{\gamma} > \gamma \rho \),

(v) \(0 < a_n < \|D_i\|^{-1} \) for \(i = 1, 2, ..., N \).

Then the sequence \(\{x_n\} \) converge strongly to the unique fixed point of the contraction mapping \(z = P_{\Gamma} \left(\gamma f + I - \sum_{i=1}^{N} a_i D_i \right) z \).

Proof. Let \(z^* = P_{\Gamma} \left(\gamma f + I - \sum_{i=1}^{N} a_i D_i \right) z^* \), we have \(z^* \in C \cap F(T) \) and \(Az^* \in Q \cap F(S) \). From \(P_Q \) is firmly nonexpansive, thus

\[
\|z_n - Az^*\|^2 = \|P_Q Ax_n - P_Q Az^*\|^2 \\
\leq \|Ax_n - Az^*\|^2 - \|(I - P_Q)Ax_n - (I - P_Q)Az^*\|^2 \\
= \|Ax_n - Az^*\|^2 - \|Ax_n - z_n\|^2. \tag{3.2}
\]

Applying Proposition 2.12 condition (ii) and (iii), we have

\[
F(S((1 - \eta_n)I + \eta_n S)) = F(S)
\]

and

\[
F(T((1 - \gamma_n)I + \gamma_n T)) = F(T)
\]

for all \(n \in \mathbb{N} \).

By Proposition 2.13 and condition (ii), we have

\[
\|v_n - Az^*\| = \|[(1 - \xi_n)I + \xi_n S ((1 - \eta_n)I + \eta_n S)] z_n - Az^*\| \\
\leq \|z_n - Az^*\|. \tag{3.3}
\]

This together with (3.2), it implies that

\[
\|v_n - Az^*\|^2 \leq \|z_n - Az^*\|^2 \\
\leq \|Ax_n - Az^*\|^2 - \|Ax_n - z_n\|^2 \tag{3.4}
\]
By Proposition 2.13 and condition (iii), we have
\[\|x_{n+1} - z\| = \|(1 - \beta_n)I + \beta_n T ((1 - \gamma_n) I + \gamma_n T) u_n - z\| \leq \|u_n - z\|. \] (3.5)

Since \(P_C \) is nonexpansive, we have
\[\|u_n - z\| = \|P_C y_n - P_C z\| \leq \|y_n - z\|. \] (3.6)

From definition of \(\{y_n\} \), we obtain
\[
\|y_n - z\| = \left\| \alpha_n \gamma f(x_n) + \left(I - \alpha_n \sum_{i=1}^{N} a_i D_i \right) (x_n - \delta A^* (Ax_n - v_n)) - z \right\| \\
= \|\alpha_n \gamma f(x_n) - \alpha_n \gamma f(z^*) + \alpha_n \gamma f(z^*) - \alpha_n \sum_{i=1}^{N} a_i D_i z^* + x_n - \delta A^* (Ax_n - v_n) - \alpha_n \sum_{i=1}^{N} a_i D_i z^* + z\| \\
= \|\alpha_n \gamma (f(x_n) - f(z^*)) + \alpha_n \left(\gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \right) \\
+ \left(I - \alpha_n \sum_{i=1}^{N} a_i D_i \right) (x_n - z^* - \delta A^* (Ax_n - v_n)) \| \\
\leq \alpha_n \gamma \|f(x_n) - f(z^*)\| + \alpha_n \left\| \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \right\| \\
+ \left\| I - \alpha_n \sum_{i=1}^{N} a_i D_i \right\| \|x_n - z^* + \delta A^* (v_n - Ax_n)\| \\
\leq \alpha_n \gamma \rho \|x_n - z^*\| + \alpha_n \left\| \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \right\| \\
+ (1 - \alpha_n \hat{\gamma}) \|x_n - z^* + \delta A^* (v_n - Ax_n)\|. \] (3.7)

Observe that
\[
\langle x_n - z^*, A^* (v_n - Ax_n) \rangle \\
= \langle Ax_n - Az^*, v_n - Ax_n \rangle \\
= \langle Ax_n - Az^* + v_n - Ax_n - (v_n - Ax_n), v_n - Ax_n \rangle \\
= \langle Az^* + v_n - Ax_n, v_n - Ax_n \rangle - \langle v_n - Ax_n, v_n - Ax_n \rangle \\
= \langle v_n - Az^*, v_n - Ax_n \rangle - \|v_n - Ax_n\|^2. \] (3.8)
and

\[
\langle v_n - Az^*, v_n - Ax_n \rangle = \frac{1}{2} \left(\|v_n - Az^*\|^2 + \|v_n - Ax_n\|^2 - \|Ax_n - Az^*\|^2 \right). \tag{3.9}
\]

From (3.4), (3.8) and (3.9), we obtain

\[
\langle x_n - z^*, A^*(v_n - Ax_n) \rangle
= \frac{1}{2} \left(\|v_n - Az^*\|^2 + \|v_n - Ax_n\|^2 - \|Ax_n - Az^*\|^2 \right) - \|v_n - Ax_n\|^2
\leq \frac{1}{2} \left(\|Ax_n - Az^*\|^2 - \|Ax_n - z_n\|^2 + \|v_n - Ax_n\|^2 - \|Ax_n - Az^*\|^2 \right) - \|v_n - Ax_n\|^2
= - \frac{1}{2} \|z_n - Ax_n\|^2 - \frac{1}{2} \|v_n - Ax_n\|^2. \tag{3.10}
\]

From (3.10), we have

\[
\|x_n - z^* + \delta A^*(v_n - Ax_n)\|^2
= \|x_n - z^*\|^2 + \delta^2 \|A^*(v_n - Ax_n)\|^2 + 2\delta \langle x_n - z^*, A^*(v_n - Ax_n) \rangle
\leq \|x_n - z^*\|^2 + \delta^2 \|A^*\|^2 \|v_n - Ax_n\|^2 + 2\delta \left(- \frac{1}{2} \|z_n - Ax_n\|^2 - \frac{1}{2} \|v_n - Ax_n\|^2 \right)
= \|x_n - z^*\|^2 + \delta^2 \|A\|^2 \|v_n - Ax_n\|^2 - \delta \|z_n - Ax_n\|^2 - \delta \|v_n - Ax_n\|^2
= \|x_n - z^*\|^2 + \delta \left(\delta \|A\|^2 - 1 \right) \|v_n - Ax_n\|^2 - \delta \|z_n - Ax_n\|^2. \tag{3.11}
\]

From (3.11) and condition (iv), we have

\[
\|x_n - z^* + \delta A^*(v_n - Ax_n)\|^2 \leq \|x_n - z^*\|^2.
\]

So,

\[
\|x_n - z^* + \delta A^*(v_n - Ax_n)\| \leq \|x_n - z^*\|. \tag{3.12}
\]

From (3.7) and (3.12), we get

\[
\|y_n - z^*\|
\leq \alpha_n \gamma \rho \|x_n - z^*\| + \alpha_n \left\| \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \right\| + (1 - \alpha_n \bar{\gamma}) \|x_n - z^* + \delta A^*(v_n - Ax_n)\|
\leq \alpha_n \gamma \rho \|x_n - z^*\| + \alpha_n \left\| \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \right\| + (1 - \alpha_n \bar{\gamma}) \|x_n - z^*\|
= [1 - \alpha_n (\bar{\gamma} - \gamma \rho)] \|x_n - z^*\| + \alpha_n \left\| \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \right\|. \tag{3.13}
\]
By definition of \(\{x_n\} \), (3.5), (3.6) and (3.13), we get

\[
\|x_{n+1} - z^*\| \leq [1 - \alpha_n(\bar{\gamma} - \gamma \rho)] \|x_n - z^*\| + \alpha_n \left\| \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \right\|
\]

\[
= [1 - \alpha_n(\bar{\gamma} - \gamma \rho)] \|x_n - z^*\| + \alpha_n(\bar{\gamma} - \gamma \rho) \left\| \frac{\gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*}{\bar{\gamma} - \gamma \rho} \right\|
\]

By induction, we get

\[
\|x_{n+1} - z^*\| \leq \max \left\{ \|x_0 - z^*\|, \frac{\left\| \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \right\|}{\bar{\gamma} - \gamma \rho} \right\}.
\]

Hence, the sequence \(\{x_n\} \) is bounded.

Since \(P_C \) is firmly nonexpansive, we have

\[
\|u_n - z^*\|^2 = \|P_C y_n - z^*\|^2
\]

\[
= \|P_C y_n - P_C z^*\|^2
\]

\[
\leq \|y_n - z^*\|^2 - \|(I - P_C)y_n - (I - P_C)z^*\|^2
\]

\[
= \|y_n - z^*\|^2 - \|y_n - P_C y_n\|^2
\]

\[
= \|y_n - z^*\|^2 - \|u_n - y_n\|^2.
\] (3.14)

From (3.5), (3.13) and (3.14), we have

\[
\|x_{n+1} - z^*\|^2
\]

\[
\leq \|u_n - z^*\|^2
\]

\[
\leq \|y_n - z^*\|^2 - \|u_n - y_n\|^2
\]

\[
= \left([1 - \alpha_n(\bar{\gamma} - \gamma \rho)] \|x_n - z^*\| + \alpha_n \left\| \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \right\| \right)^2 - \|u_n - y_n\|^2
\]

\[
= (1 - \alpha_n(\bar{\gamma} - \gamma \rho))^2 \|x_n - z^*\|^2
\]

\[
+ 2\alpha_n [1 - \alpha_n(\bar{\gamma} - \gamma \rho)] \|x_n - z^*\| \left\| \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \right\|
\]

\[
+ \alpha_n^2 \left\| \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \right\|^2 - \|u_n - y_n\|^2.
\]
That is,

\[\|u_n - y_n\|^2 \leq \|x_n - z^*\|^2 - \|x_{n+1} - z^*\|^2 + \alpha_n^2 \left\| \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \right\|^2 \]

\[+ 2\alpha_n \left[1 - \alpha_n(\bar{\gamma} - \gamma \rho) \right] \left\| x_n - z^* \right\| \left\| \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \right\| \]

\[\leq \left\| x_n - z^* \right\| + \left\| (1 - \alpha_n \bar{\gamma}) (x_n - z^* + \delta A^* (v_n - Ax_n)) \right\| \]

\[\leq \alpha_n \bar{\gamma} \left(\|x_n - z^*\| + \left\| \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \right\| \right) \]

\[+ (1 - \alpha_n \bar{\gamma}) \|x_n - z^* + \delta A^* (v_n - Ax_n)\| \]

\[\leq \alpha_n \bar{\gamma} \left(\|x_n - z^*\| + \left\| \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \right\| \right) \]

\[+ (1 - \alpha_n \bar{\gamma}) \|x_n - z^* + \delta A^* (v_n - Ax_n)\|. \] (3.17)

Since \(\{x_n\} \) is bounded, then there exists a constant \(M > 0 \) such that

\[\sup_n \left\{ \gamma \rho \|x_n - z^*\| + \frac{\| \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \|}{\bar{\gamma}} \right\} < M. \]

By using property of convex function of \(\|\cdot\|^2 \) and (3.17), we have

\[\|y_n - z^*\|^2 \leq \alpha_n \bar{\gamma} M^2 + (1 - \alpha_n \bar{\gamma}) \|x_n - z^* + \delta A^* (v_n - Ax_n)\|^2. \] (3.18)
From (3.5), (3.6), (3.11) and (3.18), thus

\[\|x_{n+1} - z^*\|^2 \]
\[\leq \|u_n - z^*\|^2 \]
\[\leq \|y_n - z^*\|^2 \]
\[\leq \alpha_n \gamma M^2 + (1 - \alpha_n \gamma) \|x_n - z^* + \delta A^* (v_n - Ax_n)\|^2 \]
\[\leq \alpha_n \gamma M^2 + (1 - \alpha_n \gamma) \left(\|x_n - z^*\|^2 + \delta \|A\|^2 \right) \|v_n - Ax_n\|^2 \]
\[= (1 - \alpha_n \gamma) \|x_n - z^*\|^2 + (1 - \alpha_n \gamma) \delta \|A\|^2 \|v_n - Ax_n\|^2 \]
\[- \delta (1 - \alpha_n \gamma) \|z_n - Ax_n\|^2 + \alpha_n \gamma M^2. \]

Hence,

\[(1 - \alpha_n \gamma) \delta \left(1 - \delta \|A\|^2 \right) \|v_n - Ax_n\|^2 + \delta (1 - \alpha_n \gamma) \|z_n - Ax_n\|^2 \]
\[\leq (1 - \alpha_n \gamma) \|x_n - z^*\|^2 + \|x_{n+1} - z^*\|^2 + \alpha_n \gamma M^2 \]
\[\leq \|x_n - z^*\|^2 + \|x_{n+1} - z^*\|^2 + \alpha_n \gamma M^2. \]

This implies that

\[\lim_{n \to \infty} \|v_n - Ax_n\| = \lim_{n \to \infty} \|z_n - Ax_n\| = 0. \quad (3.19) \]

Consider that

\[\|v_n - z_n\| = \|v_n - Ax_n + Ax_n - z_n\| \]
\[\leq \|v_n - Ax_n\| + \|z_n - Ax_n\|. \]

Thus

\[\lim_{n \to \infty} \|v_n - z_n\| = 0. \quad (3.20) \]

Note that

\[v_n - z_n = (1 - \xi_n) z_n + \xi_n S ((1 - \eta_n) z_n + \eta_n S z_n) - z_n \]
\[= \xi_n [S ((1 - \eta_n) I + \eta_n S) z_n - z_n]. \]

From (3.20), then

\[\lim_{n \to \infty} \|z_n - S ((1 - \eta_n) I + \eta_n S) z_n\| = 0. \quad (3.21) \]

Consider that

\[\|S ((1 - \eta_n) I + \eta_n S) z_n - S ((1 - \eta_n) I + \eta_n S) Ax_n\| \]
\[\leq \mathcal{L}_1 \|((1 - \eta_n) I + \eta_n S) z_n - ((1 - \eta_n) I + \eta_n S) Ax_n\| \]
\[= \mathcal{L}_1 \| (z_n - Ax_n) + \eta_n (S z_n - S Ax_n) \| \]
\[\leq \mathcal{L}_1 \| (z_n - Ax_n) + \eta_n \| S z_n - S Ax_n \| \]
\[\leq \mathcal{L}_1 \| z_n - Ax_n \| + \eta_n \mathcal{L}_1 \| S z_n - S Ax_n \| \]
\[= \mathcal{L}_1 (1 - \eta_n (1 - \mathcal{L}_1)) \| z_n - Ax_n \|. \quad (3.22) \]
From (3.22), thus

$$\| Ax_n - S ((1 - \eta_n) I + \eta_n S) Ax_n \|
\leq \| Ax_n - z_n \| + \| z_n - S ((1 - \eta_n) I + \eta_n S) z_n \|
+ \| S ((1 - \eta_n) I + \eta_n S) z_n - S ((1 - \eta_n) I + \eta_n S) Ax_n \|
\leq \| Ax_n - z_n \| + \| z_n - S ((1 - \eta_n) I + \eta_n S) z_n \| + \mathcal{L}_1 (1 - \eta_n (1 - \mathcal{L}_1)) \| z_n - Ax_n \|. \tag{3.23}$$

From (3.19), (3.21) and (3.23), then we have

$$\lim_{n \to \infty} \| Ax_n - S ((1 - \eta_n) I + \eta_n S) Ax_n \| = 0. \tag{3.24}$$

Since

$$\| Ax_n - S Ax_n \|
= \| Ax_n - S ((1 - \eta_n) I + \eta_n S) Ax_n + S ((1 - \eta_n) I + \eta_n S) Ax_n - S Ax_n \|
\leq \| Ax_n - S ((1 - \eta_n) I + \eta_n S) Ax_n \| + \| S ((1 - \eta_n) I + \eta_n S) Ax_n - S Ax_n \|
\leq \| Ax_n - S ((1 - \eta_n) I + \eta_n S) Ax_n \| + \mathcal{L}_1 \| ((1 - \eta_n) I + \eta_n S) Ax_n - Ax_n \|
= \| Ax_n - S ((1 - \eta_n) I + \eta_n S) Ax_n \| + \mathcal{L}_1 \eta_n \| Ax_n - S Ax_n \|. \tag{3.25}$$

It implies that

$$\| Ax_n - S Ax_n \| \leq \frac{1}{1 - \mathcal{L}_1 \eta_n} \| Ax_n - S ((1 - \eta_n) I + \eta_n S) Ax_n \|. \tag{3.25}$$

By (3.24), we obtain

$$\lim_{n \to \infty} \| Ax_n - S Ax_n \| = 0. \tag{3.25}$$
Consider that

\[
\|y_n - x_n\| = \left\| \alpha_n \gamma f(x_n) + \left(I - \alpha_n \sum_{i=1}^{N} a_i D_i \right) (x_n - \delta A^* (Ax_n - v_n)) - x_n \right\|
\]

\[
= \left\| \alpha_n \gamma f(x_n) - \delta A^* (Ax_n - v_n) - \alpha_n \sum_{i=1}^{N} a_i D_i x_n + \alpha_n \sum_{i=1}^{N} a_i D_i A^* (Ax_n - v_n) \right\|
\]

\[
= \left\| \alpha_n \left(\gamma f(x_n) - \sum_{i=1}^{N} a_i D_i x_n + \delta \sum_{i=1}^{N} a_i D_i A^* (Ax_n - v_n) \right) + \delta A^* (v_n - Ax_n) \right\|
\]

\[
\leq \alpha_n \left\| \gamma f(x_n) - \sum_{i=1}^{N} a_i D_i (x_n - \delta A^* (Ax_n - v_n)) \right\| + \delta \| A^* \| \| v_n - Ax_n \|
\]

\[
= \alpha_n \left\| \gamma f(x_n) - \sum_{i=1}^{N} a_i D_i (x_n - \delta A^* (Ax_n - v_n)) \right\| + \delta \| A \| \| v_n - Ax_n \|.
\]

It follows from (3.19) and condition (i) that

\[
\lim_{n \to \infty} \|x_n - y_n\| = 0. \tag{3.26}
\]

From definition of \{x_n\}, we have

\[
\|x_{n+1} - z^*\|^2 = \|(1 - \beta_n)u_n + \beta_n T ((1 - \gamma_n) u_n + \gamma_n Tu_n) - z^*\|^2
\]

\[
= \|(1 - \beta_n)(u_n - z^*) + \beta_n [T ((1 - \gamma_n) u_n + \gamma_n Tu_n) - z^*]\|^2
\]

\[
=(1 - \beta_n) \|u_n - z^*\|^2 + \beta_n \|T ((1 - \gamma_n) u_n + \gamma_n Tu_n) - z^*\|^2
\]

\[
- \beta_n (1 - \beta_n) \|T ((1 - \gamma_n) u_n + \gamma_n Tu_n) - u_n\|^2. \tag{3.27}
\]

Applying proposition 2.13, we have

\[
\|T ((1 - \gamma_n) u_n + \gamma_n Tu_n) - z^*\|^2
\]

\[
\leq \|u_n - z^*\|^2 + (1 - \gamma_n) \|u_n - T ((1 - \gamma_n) u_n + \gamma_n Tu_n)\|^2. \tag{3.28}
\]
From (3.6), (3.12), (3.18), (3.27) and (3.28), thus
\[
\|x_{n+1} - z^*\|^2 = (1 - \beta_n) \|u_n - z^*\|^2 + \beta_n \|T ((1 - \gamma_n) u_n + \gamma_n T u_n) - z^*\|^2
\]
\[
- \beta_n (1 - \beta_n) \|u_n - T ((1 - \gamma_n) u_n + \gamma_n T u_n) - u_n\|^2
\]
\[
\leq (1 - \beta_n) \|u_n - z^*\|^2 + \beta_n (\|u_n - z^*\|^2
\]
\[
+ (1 - \gamma_n) \|u_n - T ((1 - \gamma_n) u_n + \gamma_n T u_n)\|^2
\]
\[
- \beta_n (1 - \beta_n) \|T ((1 - \gamma_n) u_n + \gamma_n T u_n) - u_n\|^2
\]
\[
= \|y_n - z^*\|^2 + \beta_n (1 - \gamma_n) \|u_n - T ((1 - \gamma_n) u_n + \gamma_n T u_n)\|^2
\]
\[
- \beta_n (1 - \beta_n) \|T ((1 - \gamma_n) u_n + \gamma_n T u_n) - u_n\|^2
\]
\[
\leq \alpha_n \tilde{\gamma} M^2 + (1 - \alpha_n \tilde{\gamma}) \|x_n - z^* + \delta A^* (v_n - A x_n)\|^2
\]
\[
+ \beta_n (1 - \gamma_n) \|u_n - T ((1 - \gamma_n) u_n + \gamma_n T u_n)\|^2
\]
\[
- \beta_n (1 - \beta_n) \|T ((1 - \gamma_n) u_n + \gamma_n T u_n) - u_n\|^2
\]
\[
= \alpha_n \tilde{\gamma} M^2 + (1 - \alpha_n \tilde{\gamma}) \|x_n - z^* + \delta A^* (v_n - A x_n)\|^2
\]
\[
- \beta_n (\gamma_n - \beta_n) \|u_n - T ((1 - \gamma_n) u_n + \gamma_n T u_n)\|^2
\]
\[
\leq \alpha_n \tilde{\gamma} M^2 + \|x_n - z^*\|^2
\]
\[
- \beta_n (\gamma_n - \beta_n) \|u_n - T ((1 - \gamma_n) u_n + \gamma_n T u_n)\|^2.
\]

It implies that
\[
\beta_n (\gamma_n - \beta_n) \|u_n - T ((1 - \gamma_n) u_n + \gamma_n T u_n)\|^2 \leq \alpha_n \tilde{\gamma} M^2 + \|x_n - z^*\|^2 - \|x_{n+1} - z^*\|^2.
\]

By condition (i) and (iii), we get
\[
\lim_{n \to \infty} \|u_n - T ((1 - \gamma_n) u_n + \gamma_n T u_n)\| = 0. \tag{3.29}
\]

Observe that
\[
\|u_n - T u_n\| \leq \|u_n - T ((1 - \gamma_n) u_n + \gamma_n T u_n)\| + \|T ((1 - \gamma_n) u_n + \gamma_n T u_n) - T u_n\|
\]
\[
\leq \|u_n - T ((1 - \gamma_n) u_n + \gamma_n T u_n)\| + L_2 \|((1 - \gamma_n) u_n + \gamma_n T u_n) - u_n\|
\]
\[
= \|u_n - T ((1 - \gamma_n) u_n + \gamma_n T u_n)\| + L_2 \gamma_n \|u_n - T u_n\|.
\]

Thus,
\[
\|u_n - T u_n\| \leq \frac{1}{1 - L_2 \gamma_n} \|u_n - T ((1 - \gamma_n) u_n + \gamma_n T u_n)\|.
\]

This together with (3.29) implies that,
\[
\lim_{n \to \infty} \|u_n - T u_n\| = 0. \tag{3.30}
\]
Next, we will show that
\[\limsup_{n \to \infty} \langle \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_n - z^* \rangle \leq 0, \]
where \(z^* = P_{\Gamma}(\gamma f + I - \sum_{i=1}^{N} a_i D_i)z^* \).

Choose a subsequence \(\{y_{n_i}\} \) of \(\{y_n\} \) such that
\[\limsup_{n \to \infty} \langle \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_n - z^* \rangle = \lim_{i \to \infty} \langle \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_{n_i} - z^* \rangle. \] (3.31)

Since the sequence \(\{y_n\} \) is bounded, without loss of generality, we have a subsequence \(\{y_{n_i}\} \) of \(\{y_n\} \) such that \(y_{n_i} \rightharpoonup z \). Subsequently, we derive from above conclusion that
\[
\begin{align*}
 x_{n_i} &\rightharpoonup z, \\
y_{n_i} &\rightharpoonup z, \\
u_{n_i} &\rightharpoonup z
\end{align*}
\] (3.32)

and
\[
\begin{align*}
 Ax_{n_i} &\rightharpoonup Az, \\
 Ay_{n_i} &\rightharpoonup Az, \\
 Au_{n_i} &\rightharpoonup Az
\end{align*}
\] (3.33)

Note that \(u_{n_i} = P_{C} y_{n_i} \in C \) and (3.32), thus \(z \in C \).

From demiclosedness of \((I-T)\) and \((I-T)u_{n_i} \to 0\), then \(z \in F(T) \).

Therefore, \(z \in C \cap F(T) \).

Note that \(z_{n_i} = P_{Q} Ax_{n_i} \in Q \) and from (3.19) and (3.33), we have \(z_{n_i} \rightharpoonup Az \).

Thus, \(Az \in Q \).

From demiclosedness of \((I-S)\) and \((I-S)Ax_{n_i} \to 0\), then \(Az \in F(S) \).

Therefore, \(Az \in Q \cap F(S) \). That is \(z \in \Gamma \).

Consequently,
\[
\begin{align*}
 \limsup_{n \to \infty} \langle \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_n - z^* \rangle &= \lim_{i \to \infty} \langle \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_{n_i} - z^* \rangle \\
 &= \langle \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, z - z^* \rangle \\
 &\leq 0.
\end{align*}
\] (3.34)
Consider that

\[\|y_n - z^*\|^2 \leq \left\| I - \alpha_n \sum_{i=1}^{N} a_i D_i \right\|^2 \left\| x_n - z^* \right\|^2 - \delta A^* (Ax_n - v_n) \left\|^2 \right. \\
\left. + 2(\alpha_n \gamma f(x_n) - f(z^*)) + \alpha_n \left(\gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^* \right), y_n - z^* \right\} \\
= \left(I - \alpha_n \sum_{i=1}^{N} a_i D_i \right) \left\| x_n - z^* - \delta A^* (Ax_n - v_n) \right\|^2 \\
\left. + 2\alpha_n \gamma f(z^*), y_n - z^* \right) \\
\leq \left(I - \alpha_n \sum_{i=1}^{N} a_i D_i \right) \left\| x_n - z^* \right\|^2 + 2\alpha_n \gamma f(x_n) \left\| x_n - z^* \right\| \left\| y_n - z^* \right\| \\
\left. + 2\alpha_n \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_n - z^* \right) \\
\leq (1 - \alpha_n \gamma)^2 \left\| x_n - z^* \right\|^2 + 2\alpha_n \gamma \rho \left\| x_n - z^* \right\| \left\| y_n - z^* \right\| \\
\left. + 2\alpha_n \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_n - z^* \right) \\
\leq (1 - \alpha_n \gamma)^2 \left\| x_n - z^* \right\|^2 + \alpha_n \gamma \rho \left\| x_n - z^* \right\|^2 + \alpha_n \gamma \rho \left\| y_n - z^* \right\|^2 \\
\left. + 2\alpha_n \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_n - z^* \right) \\
= (1 - \alpha_n \gamma \rho) \left\| y_n - z^* \right\|^2 \\
\leq (1 - 2\alpha_n \gamma + \alpha_n^2 \gamma^2 + \alpha_n \gamma \rho) \left\| x_n - z^* \right\|^2 + 2\alpha_n \left(\gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_n - z^* \right) \\
= (1 + \alpha_n \gamma \rho - 2\alpha_n \gamma) \left\| x_n - z^* \right\|^2 + \alpha_n^2 \gamma^2 \left\| x_n - z^* \right\|^2 \\
\left. + 2\alpha_n \left(\gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_n - z^* \right) \right)
\begin{align*}
&= (1 - \alpha_n \gamma \rho + 2 \alpha_n \gamma \rho - 2 \alpha_n \tilde{\gamma}) \|x_n - z^*\|^2 + \alpha_n^2 \tilde{\gamma}^2 \|x_n - z^*\|^2 \\
&+ 2\alpha_n \langle \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_n - z^* \rangle
\end{align*}

then,

\begin{align*}
\|y_n - z^*\|^2 &\leq \left[1 - \frac{2\alpha_n (\tilde{\gamma} - \gamma \rho)}{1 - \gamma \rho \alpha_n} \right] \|x_n - z^*\|^2 + \frac{\tilde{\gamma}^2 \alpha_n^2}{1 - \gamma \rho \alpha_n} \|x_n - z^*\|^2 \\
&+ \frac{2\alpha_n}{1 - \gamma \rho \alpha_n} \langle \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_n - z^* \rangle.
\end{align*}

Therefore,

\begin{align*}
\|x_{n+1} - z^*\|^2 &\leq \|y_n - z^*\|^2 \\
&\leq \left[1 - \frac{2\alpha_n (\tilde{\gamma} - \gamma \rho)}{1 - \gamma \rho \alpha_n} \right] \|x_n - z^*\|^2 + \frac{\tilde{\gamma}^2 \alpha_n^2}{1 - \gamma \rho \alpha_n} \|x_n - z^*\|^2 \\
&+ \frac{2\alpha_n}{1 - \gamma \rho \alpha_n} \langle \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_n - z^* \rangle \\
&= \left[1 - \frac{2\alpha_n (\tilde{\gamma} - \gamma \rho)}{1 - \gamma \rho \alpha_n} \right] \|x_n - z^*\|^2 \\
&+ \frac{2\alpha_n (\tilde{\gamma} - \gamma \rho)}{1 - \gamma \rho \alpha_n} \left[\frac{\tilde{\gamma}^2 \alpha_n}{2(\tilde{\gamma} - \gamma \rho)} \|x_n - z^*\|^2 + \frac{1}{\tilde{\gamma} - \gamma \rho} \langle \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_n - z^* \rangle \right].
\end{align*}

Applying (3.34), (3.35) and Lemma 2.9, we obtain $x_n \to z^*$ as $n \to \infty$.

In Case 2, we assume that there exists some integer n_0 such that

\[\|x_{n_0} - z^*\| \leq \|x_{n_0+1} - z^*\| . \]

Setting $w_n = \|x_n - z^*\|$, then

\[w_{n_0} \leq w_{n_0+1}. \]

Define an integer sequence $\{\tau_n\}$ for all $n \geq n_0$ as follows:

\[\tau(n) = \max \{ l \in \mathbb{N} | n_0 \leq l \leq n, w_l \leq w_{l+1} \}. \]

It is clear that τ_n is a nondecreasing sequence satisfying

\[\lim_{n \to \infty} \tau(n) = \infty. \]
for all $n \geq n_0$.

By a similar argument of Case 1, that is

$$\lim_{n \to \infty} \|u_{\tau(n)} - y_{\tau(n)}\| = 0,$$

$$\lim_{n \to \infty} \|x_{\tau(n)} - y_{\tau(n)}\| = 0,$$

$$\lim_{n \to \infty} \|SAx_{\tau(n)} - Ax_{\tau(n)}\| = 0$$

and

$$\lim_{n \to \infty} \|u_{\tau(n)} - Tu_{\tau(n)}\| = 0.$$

This implies that $w_w(y_{\tau(n)}) \subset \Gamma$.

We obtain

$$\limsup_{n \to \infty} \langle \gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_{\tau(n)} - z^* \rangle \leq 0. \quad (3.36)$$

From $w_{\tau(n)} \leq w_{\tau(n)+1}$ and $\frac{3.35}{3.35}$, we have

$$w_{\tau(n)}^2 \leq w_{\tau(n)+1}^2$$

$$\leq \left[1 - \frac{2\alpha_{\tau(n)}(\bar{\gamma} - \gamma \rho)}{1 - \gamma \rho \alpha_{\tau(n)}} \right] w_{\tau(n)}^2 + \frac{\bar{\gamma}^2 \alpha_{\tau(n)}^2}{1 - \gamma \rho \alpha_{\tau(n)}} w_{\tau(n)}^2$$

$$+ \left(2 \alpha_{\tau(n)} \frac{\gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_{\tau(n)} - z^*} {1 - \gamma \rho \alpha_{\tau(n)}} \right). \quad (3.37)$$

It implies that

$$w_{\tau(n)}^2 \leq \frac{2}{2(\bar{\gamma} - \gamma \rho) - \bar{\gamma}^2 \alpha_{\tau(n)}} (\gamma f(z^*) - \sum_{i=1}^{N} a_i D_i z^*, y_{\tau(n)} - z^*). \quad (3.38)$$

Combining (3.36) and (3.38), we have

$$\limsup_{n \to \infty} w_{\tau(n)} \leq 0,$$

and hence

$$\lim_{n \to \infty} w_{\tau(n)} = 0. \quad (3.39)$$

From (3.39), implies that

$$\lim_{n \to \infty} w_{\tau(n)+1} = 0.$$

Applying Lemma 2.10, we have

$$\max\{w_{\tau(n)}, w_n\} \leq w_{\tau(n)+1}.$$
It implies that
\[w_n \leq w_{\tau(n)+1}. \]
(3.40)

Since \(w_n \) is nondecreasing sequence and \(n \leq \tau(n) \),
\[w_n \leq w_{\tau(n)}. \]
(3.41)

From (3.40) and (3.41), we obtain
\[0 \leq w_n \leq \max\{w_{\tau(n)}, w_{\tau(n)+1}\}. \]

Therefore, \(w_n \to 0 \). That is, \(x_n \to z^* \). This complete the proof.

By using our main result, we obtain the following results in Hilbert spaces.

Corollary 3.2. Let \(H_1 \) and \(H_2 \) are two real Hilbert space, let \(C \subseteq H_1 \) and \(Q \subseteq H_2 \) are two nonempty closed convex sets. Let \(A : H_1 \to H_2 \) is a bounded linear operator with its adjoint \(A^* \), \(D \) is strongly positive bounded linear operator on \(H_1 \) with coefficient \(\gamma_i > 0 \) and \(\bar{\gamma} = \min_{i=1,2,...,N} \gamma_i \), \(f : C \to H_1 \) is a \(\rho \)-contraction, \(S : Q \to Q \) is an \(L_1 \)-Lipschitzian quasi-pseudo-contractive operator with \(L_1 > 1 \), \(T : C \to C \) is an \(L_2 \)-Lipschitzian quasi-pseudo-contractive operator with \(L_2 > 1 \). Assume that \(\Gamma \neq \emptyset \) and let \(\{x_n\} \) be a sequences generated by \(x_0 \in H_1 \)

\[
\begin{align*}
z_n &= P_Q Ax_n, \\
v_n &= (1 - \xi_n)z_n + \xi_nS((1 - \eta_n)z_n + \eta_nSz_n), \\
y_n &= \alpha_n\gamma f(x_n) + (I - \alpha_nD)(x_n - \delta A^*(Ax_n - v_n)), \\
u_n &= P_C y_n, \\
x_{n+1} &= (1 - \beta_n)u_n + \beta_nT((1 - \gamma_n)u_n + \gamma_nTu_n), \quad \text{for } n \geq 1
\end{align*}
\]
(3.42)

The parameters \(\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\xi_n\} \) and \(\{\eta_n\} \) are real sequences in \([0, 1]\), \(\delta \) and \(\gamma \) are two positive constants.

We use \(\Gamma \) to denote the set of solution of problem (1.3), that is,
\[\Gamma = \{x \mid x \in C \cap F(T), Ax \in Q \cap F(S)\}. \]

Suppose that \(T - I \) and \(S - I \) are demiclosed at 0. Assume that the following conditions are satisfied:

(i) \(\lim_{n \to \infty} \alpha_n = 0 \) and \(\sum_{n=1}^{\infty} \alpha_n = \infty \),

(ii) \(0 < a_1 < \xi_n < b_1 < \eta_n < c_1 < \frac{1}{\sqrt{1 + L_1^2} + 1} \),

(iii) \(0 < a_2 < \beta_n < b_2 < \gamma_n < c_2 < \frac{1}{\sqrt{1 + L_2^2} + 1} \),

(iv) \(0 < \delta, \gamma < \frac{1}{\|A\|^2} \) and \(\bar{\gamma} > \gamma \rho \),
Then the sequence \(\{x_n\} \) converge strongly to the unique fixed point of the contraction mapping \(z = P_T(\gamma f + I - D)z \).

Proof. Putting \(D = D_1 = D_2 = D_3 = \cdots = D_N \) in Theorem 3.1, we get the desired conclusions. \(\square \)

Corollary 3.3. Let \(H_1 \) and \(H_2 \) are two real Hilbert space, let \(C \subseteq H_1 \) and \(Q \subseteq H_2 \) are two nonempty closed convex sets. Let \(A : H_1 \to H_2 \) is a bounded linear operator with its adjoint \(A^* \), \(D_i \) is strongly positive bounded linear operator on \(H_1 \) with coefficient \(\gamma_i > 0 \) and \(\bar{\gamma} = \min_{i=1,2,\ldots,N} \gamma_i \), \(f : C \to H_1 \) is a \(\rho \)-contraction, \(S : Q \to Q \) is an \(L \)-Lipschitzian quasi-pseudo-contractive operator with \(L > 1 \). Assume that \(\Gamma \neq \emptyset \) and let \(\{x_n\} \) be sequences generated by \(x_0 \in H_1 \)

\[
\begin{align*}
\begin{cases}
z_n = P_QAx_n, \\
v_n = (1 - \xi_n)z_n + \xi_nS((1 - \eta_n)z_n + \eta_nSz_n), \\
x_{n+1} = P_C\left[\alpha_n f(x_n) + (I - \alpha_n \sum_{i=1}^{N} a_iD_i) (x_n - \delta A^* (Ax_n - v_n))\right], \text{for } n \geq 1
\end{cases}
\end{align*}
\]

(3.43)

The parameters \(\{\alpha_n\}, \{\xi_n\} \) and \(\{\eta_n\} \) are real sequences in \([0,1]\), \(\delta \) and \(\gamma \) are two positive constants.

We use \(\Gamma \) to denote the set of solution of problem (1.3), that is,

\[\Gamma = \{x \mid x \in C, Ax \in Q \cap F(S)\}. \]

Suppose that \(S - I \) is demiclosed at 0. Assume that the following conditions are satisfied :

(i) \(\lim_{n \to \infty} \alpha_n = 0 \) and \(\sum_{n=1}^{\infty} \alpha_n = \infty \);

(ii) \(0 < a_1 < \xi_n < b_1 < \eta_n < c_1 < \frac{1}{\sqrt{1 + \bar{L}^2}} \);

(iii) \(0 < \delta < \frac{1}{\|A\|^2} \) and \(\bar{\gamma} > \gamma \rho \);

(iv) \(0 < \gamma < \frac{1}{\|A\|^2} \);

(v) \(0 < \alpha_n < \|D_i\|^{-1} \) for \(i = 1, 2, \ldots, N \).

Then the sequence \(\{x_n\} \) converge strongly to the unique fixed point of the contraction mapping \(z = P_T(\gamma f + I - \sum_{i=1}^{N} a_iD_i) \).

Proof. Putting \(T \equiv I \) in Theorem 3.1, we get the desired conclusions. \(\square \)
4 Application

Lemma 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H and $S : C \to C$ be a self-mapping of C. If S is a κ-strict pseudo-contractive mapping, then S satisfies the Lipschitz condition

$$\|Sx - Sy\| \leq \frac{1 + \kappa}{1 - \kappa} \|x - y\|, \quad \forall x, y \in C.$$

By Lemma 4.1, applying T, S are $\kappa, \bar{\kappa}$-strict pseudo-contractive mappings, we obtain this theorem.

Theorem 4.2. Let H_1 and H_2 are two real Hilbert space, let $C \subseteq H_1$ and $Q \subseteq H_2$ are two nonempty closed convex sets. Let $A : H_1 \to H_2$ is a bounded linear operator with its adjoint A^*, D_i is strongly positive bounded linear operator on H_1 with coefficient $\gamma_i > 0$ and $\bar{\gamma} = \min_{i=1,2,\ldots,N} \gamma_i$, $f : C \to H_1$ is a ρ-contraction, $S : Q \to Q$ is a $\bar{\kappa}$-strict pseudo-contractive mapping, $T : C \to C$ is a κ-strict pseudo-contractive mapping. Assume that $\Gamma \neq \emptyset$ and let $\{x_n\}$ be a sequences generated by $x_0 \in H_1$

$$\begin{align*}
z_n &= P_Q Ax_n, \\
v_n &= (1 - \xi_n) z_n + \xi_n S ((1 - \eta_n) z_n + \eta_n S z_n), \\
y_n &= \alpha_n \gamma f(x_n) + \left(I - \alpha_n \sum_{i=1}^N a_i D_i \right) (x_n - \delta A^* (Ax_n - v_n)), \\
u_n &= P_C y_n, \\
x_{n+1} &= (1 - \beta_n) u_n + \beta_n T ((1 - \gamma_n) u_n + \gamma_n Tu_n),
\end{align*}$$ \quad (4.1)

The parameters $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\xi_n\}$ and $\{\eta_n\}$ are real sequences in $[0, 1]$, δ and γ are two positive constants.

We use Γ to denote the set of solution of problem (1.3), that is, $\Gamma = \{x \mid x \in C \cap F(T), Ax \in Q \cap F(S)\}$.

Suppose that $T - I$ and $S - I$ are demiclosed at 0. Assume that the following conditions are satisfied:

(i) $\lim_{n \to \infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$,

(ii) $0 < a_1 < \xi_n < b_1 < \eta_n < c_1 < \frac{1}{\sqrt{1 + \left(\frac{1 + \kappa}{1 - \kappa} \right)^2 + 1}}$,

(iii) $0 < a_2 < \beta_n < b_2 < \gamma_n < c_2 < \frac{1}{\sqrt{1 + \left(\frac{1 + \bar{\kappa}}{1 - \bar{\kappa}} \right)^2 + 1}}$,

(iv) $0 < \delta, \gamma < \frac{1}{\|A\|^2}$ and $\bar{\gamma} > \gamma \rho$.

Proof. By using Theorem 3.1 and Lemma 4.1, we obtain the conclusion. □

In 2009, Kangtunyakarn and Suantai\cite{11} introduced the S-mapping generated by a finite family of κ-strictly pseudo contractive mappings and real numbers as follows:

Definition 4.3. Let C be a nonempty convex subset of real Banach space. Let $\{T_i\}_{i=1}^N$ be a finite family of κ_i-strict pseudo contractions of C into itself. For each $j = 1, 2, \ldots, N$, let $\alpha_j = (\alpha_1^j, \alpha_2^j, \alpha_3^j) \in I \times I \times I$, where $I \subseteq [0, 1]$ and $\alpha_1^j + \alpha_2^j + \alpha_3^j = 1$. Define the mapping $S : C \rightarrow C$ as follows:

$$
U_0 = I,
$$
$$
U_1 = \alpha_1^1 T_1 U_0 + \alpha_2^1 U_0 + \alpha_3^1 I,
$$
$$
U_2 = \alpha_1^2 T_2 U_1 + \alpha_2^2 U_2 + \alpha_3^2 I,
$$
$$
U_3 = \alpha_1^3 T_3 U_2 + \alpha_2^3 U_2 + \alpha_3^3 I,
$$
$$
\vdots
$$
$$
U_{N-1} = \alpha_1^{N-1} T_{N-1} U_{N-2} + \alpha_2^{N-1} U_{N-2} + \alpha_3^{N-1} I,
$$
$$
S = U_N = \alpha_1^N T_N U_{N-1} + \alpha_2^N U_{N-1} + \alpha_3^N I.
$$

This mapping is called S-mapping generated by T_1, T_2, \ldots, T_N and $\alpha_1, \alpha_2, \ldots, \alpha_N$.

Lemma 4.4. \cite{11} Let C be a nonempty closed convex subset of a real Hilbert space. Let $\{T_i\}_{i=1}^N$ be a finite family of κ-strict pseudo contractions of C into C with $\bigcap_{i=1}^N F(T_i) \neq \emptyset$ and $\kappa = \max \{\kappa_i : i = 1, 2, \ldots, N\}$ and let $\alpha_j = (\alpha_1^j, \alpha_2^j, \alpha_3^j) \in I \times I \times I$, $j = 1, 2, \ldots, N$, where $I \subseteq [0, 1]$, $\alpha_1^j + \alpha_2^j + \alpha_3^j = 1$, $\alpha_1^j, \alpha_2^j, \alpha_3^j \in (\kappa, 1)$ for all $j = 1, 2, \ldots, N - 1$ and $\alpha_1^N \in (\kappa, 1), \alpha_2^N \in [\kappa, 1), \alpha_3^N \in [\kappa, 1)$ for all $j = 1, 2, \ldots, N$. Let S be the mapping generated by T_1, T_2, \ldots, T_N and $\alpha_1, \alpha_2, \ldots, \alpha_N$. Then $F(S) = \bigcap_{i=1}^N F(T_i)$ and S is a nonexpansive mapping.

Theorem 4.5. Let C and Q be nonempty closed convex subset of real Hilbert spaces. Let $\{T_i\}_{i=1}^N$ be a finite family of κ_i-strict pseudo contractions of C into C with $\bigcap_{i=1}^N F(T_i) \neq \emptyset$ and $\kappa = \max \{\kappa_i : i = 1, 2, \ldots, N\}$ and let $\alpha_j = (\alpha_1^j, \alpha_2^j, \alpha_3^j) \in I \times I \times I$, $j = 1, 2, \ldots, N$, where $I \subseteq [0, 1]$, $\alpha_1^j + \alpha_2^j + \alpha_3^j = 1$, $\alpha_1^j, \alpha_2^j, \alpha_3^j \in (\kappa, 1)$ for all $j = 1, 2, \ldots, N - 1$ and $\alpha_1^N \in (\kappa, 1), \alpha_2^N \in [\kappa, 1), \alpha_3^N \in [\kappa, 1)$ for all $j = 1, 2, \ldots, N$. Let S be the S-mapping generated by T_1, T_2, \ldots, T_N and $\alpha_1, \alpha_2, \ldots, \alpha_N$. Let $\{T_i\}_{i=1}^N$ be a finite family of κ_i-strict pseudo contractions of Q into Q with
The Theory of the Feasibility Problems and Fixed Point Problems ...

\[\bigcap_{i=1}^{N} F(T_i) \neq \emptyset \text{ and } \bar{\kappa} = \max\{ \bar{\kappa}_i : i = 1, 2, ..., N \} \text{ and let } \beta_j = (\beta_1^j, \beta_2^j, \beta_3^j) \in I \times I \times I, j = 1, 2, ..., N, \text{ where } I = [0, 1], \beta_1^j + \beta_2^j + \beta_3^j = 1, \beta_1^j, \beta_3^j \in (\bar{\kappa}, 1) \text{ for all } j = 1, 2, ..., N-1 \text{ and } \beta_1^N \in (\bar{\kappa}, 1], \beta_2^N \in [\bar{\kappa}, 1), \beta_3^N \in [\bar{\kappa}, 1) \text{ for all } j = 1, 2, ..., N. \text{ Let } \bar{S} \text{ be the } S\text{-mapping generated by } T_1, T_2, ..., T_N \text{ and } \beta_1, \beta_2, ..., \beta_N. \text{ Let } A : H_1 \to H_2 \text{ is a bounded linear operator with its adjoint } A^*, D_i \text{ is strongly positive bounded linear operator on } H_1 \text{ with coefficient } \gamma_i > 0 \text{ and } \bar{\gamma} = \min_{i=1,2,...,N} \gamma_i, \ f : C \to H_1 \text{ is a } \rho\text{-contraction. Assume that } \Gamma \neq \emptyset \text{ and let } \{x_n\} \text{ be a sequences generated by } x_0 \in H_1 \]

\[
\begin{align*}
\begin{cases}
z_n = P_Q Ax_n, \\
v_n = (1 - \xi_n) z_n + \xi_n \bar{S} \left((1 - \eta_n) z_n + \eta_n S z_n \right), \\
y_n = \alpha_n \gamma f(x_n) + \left(I - \alpha_n \sum_{i=1}^{N} a_i D_i \right) (x_n - \delta A^* (Ax_n - v_n)), \\
u_n = P_C y_n, \\
x_{n+1} = (1 - \beta_n) u_n + \beta_n S ((1 - \gamma_n) u_n + \gamma_n S u_n), & \text{for } n \geq 1,
\end{cases}
\end{align*}
\]

The parameters \{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \{\xi_n\} and \{\eta_n\} are real sequences in \[0, 1\], \delta and \gamma are two positive constants.

We use \(\Gamma\) to denote the set of solution of problem (1.3), that is,

\[\Gamma = \{ x \in C \cap \bigcap_{i=1}^{N} F(T_i), Ax \in Q \cap \bigcap_{i=1}^{N} F(T_i) \}. \]

Suppose that \(S - I\) and \(\bar{S} - I\) are demiclosed at 0. Assume that the following conditions are satisfied:

(i) \(\lim_{n \to \infty} \alpha_n = 0 \) and \(\sum_{n=1}^{\infty} \alpha_n = \infty \),

(ii) \(0 < a_1 < \xi_n < b_1 < \eta_n < c_1 < \frac{1}{\sqrt{2} + 1} \),

(iii) \(0 < a_2 < \beta_n < b_2 < \gamma_n < c_2 < \frac{1}{\sqrt{2} + 1} \),

(iv) \(0 < \delta, \gamma < \frac{1}{\|A\|} \) and \(\bar{\gamma} > \gamma \rho \),

(v) \(0 < \alpha_n < \|D_i\|^{-1} \) for \(i = 1, 2, ..., N \).

Then the sequence \{\(x_n\)\} converge strongly to the unique fixed point of the contraction mapping \(z = P_T \left(\gamma f + I - \sum_{i=1}^{N} a_i D_i \right) \).

Proof. By using Theorem 3.1 and Lemma 4.3 we obtain the conclusion. \(\square\)
References

(Received 18 August 2017)
(Accepted 12 December 2017)