Graded Modules which Satisfy
the Gr-Radical Formula

S.E. Atani and F.E.K. Saraei

Abstract: Let G be a monoid with identity e, and R be a graded commutative ring. Here we study the graded modules which satisfy the Gr-radical formula. The main part of this work is devoted to extending some results from McCasland modules to Gr-McCasland modules.

Keywords: Graded rings, Gr-McCasland modules, Graded radical formula

2000 Mathematics Subject Classification: 13A02, 16W50

1 Introduction

Let G be an arbitrary monoid with identity e. A ring R with non-zero identity is G-graded if it has a direct sum decomposition (as an additive group) $R = \bigoplus_{g \in G} R_g$ such that for all $g, h \in G$, $R_g R_h \subseteq R_{gh}$. If R is G-graded, then an R-module M is said to be G-graded if it has a direct sum decomposition $M = \bigoplus_{g \in G} M_g$ such that for all $g, h \in G$, $R_g M_h \subseteq M_{gh}$. An element of R_g or M_g is said to be a homogeneous element. If $x \in M$, then x can be written uniquely as $x = \sum_{g \in G} x_g$, where x_g is the homogeneous component of x in M_g. A submodule $N \subseteq M$, where M is graded, is called G-graded if $N = \bigoplus_{g \in G} (N \cap M_g)$ or if, equivalently, N is generated by homogeneous elements. Moreover, M/N becomes a G-graded module with g-component $(M/N)_g = (M_g + N)/N$ for $g \in G$. Clearly, 0 is a graded submodule of M. Also, we write $h(R) = \bigcup_{g \in G} R_g$ and $h(M) = \bigcup_{g \in G} M_g$.

Throughout this paper R is a commutative G-graded ring with identity.

Let R be a G-graded ring. A graded ideal I of R is said to be a graded prime ideal if $I \neq R$; and whenever $ab \in I$, we have $a \in I$ or $b \in I$, where $a, b \in h(R)$. The graded radical of I, denoted by $Gr(I)$, is the set of all $x \in R$ such that for each $g \in G$ there exists $n_g > 0$ with $x_g^{n_g} \in I$. A proper graded submodule N of a graded module M is called graded prime if $rm \in N$, then $m \in N$ or $r \in (N : M) = \{ r \in R : rM \subseteq N \}$, where $r \in h(R)$, $m \in h(M)$ (note that...
(N : M) is graded by [2, Lemma 2.1]). A graded submodule N of a graded R-module M is called graded maximal submodule if N ≠ M and there is no graded submodule K of M such that N ⊊ K ⊊ M. A graded R-module M is called graded finitely generated if M = \(\sum_{i=1}^{n} Rx_{g_i} \), where \(x_{g_i} \in h(M) \) (1 ≤ i ≤ n). A graded R-module M is called a graded multiplicative module (denoted by Gr-multiplicative) if for every graded submodule N of M, N = IM for some graded ideal I of R. In this case, it is clear that every graded module which is multiplicative is a Gr-multiplicative module and N = (N : M)M.

Lemma 1.1. (cf.[5]) Let M be a graded module over a G-graded ring R and I a graded ideal of R. Then the following hold:

(i) If N is a graded submodule of M, a ∈ h(R) and m ∈ h(M), then Rm, IN and aN are graded submodule of M and aN is a graded ideal of R.

(ii) If \(\{N_i\}_{i \in J} \) is a collection of graded submodules of M, then \(\sum_{i \in J} N_i \) and \(\bigcap_{i \in J} N_i \) are graded submodules of M.

(iii) If P is a graded prime ideal of R and M a faithful graded multiplication R-module with PM ≠ M, then PM is a graded prime submodule of M.

2 Gr-radical formula

Definition 2.1. Let R be a G-graded ring, M be a graded R-module and N be a graded submodule of M.

(i) The graded radical of N in M denoted by \(Gr_M(N) \) and is defined to be the intersection of all graded prime submodules of M containing N. Should there be no graded prime submodule of M containing N, then we put \(Gr_M(N) = M \). By Lemma 1.1, It is easy to see that \(Gr_M(N) \) is a graded submodule of M containing N. On the other hand, \(Gr(R) \) denotes the intersection of all graded prime ideals of R.

(ii) The graded envelop submodule \(RGE_M(N) \) of N in M is a graded submodule of M generated by the set \(GE_M(N) = \{ rm : r \in h(R), m \in h(M) \text{ such that } r^nm \in N \text{ for some } n \in N \} \).

(iii) We say that the graded submodule N of M satisfies Gr-radical formula (graded radical formula), if \(Gr_M(N) = RGE_M(N) \).

(iv) A graded R-module M will be called a Gr-McCasland module if every graded submodule of M satisfies Gr-radical formula.

Lemma 2.2. Let M be a graded module over a G-graded ring R. Then N ⊊ RGE_M(N) ⊊ Gr_M(N) for every graded R-submodule N of M.

Proof. Obvious. \(\Box \)
3 Gr-Multiplication Modules

In this section we list some basic properties of graded multiplicative module and we will show that every Gr-multiplication module is McCasland.

Lemma 3.1. Let I be a graded ideal of a G-graded ring R and M be a graded R-module. Then there exists a proper graded submodule N of M satisfies $I = (N : M)$ if and only if $IM \neq M$, $I = (IM : M)$.

Proof. Let N be a proper graded submodule of M and $I = (N : M)$. Then $IM \subseteq N \subseteq M$, so $IM \neq M$. It is clear that $I \subseteq (IM : M)$. Let $r \in (IM : M)$ then $rM \subseteq IM \subseteq N$, so $r \in I$. Therefore $I = (IM : M)$. The convers is clear since IM is a proper graded submodule from Lemma 1.1.

Theorem 3.2. Let M be a Gr-multiplicative R-module, N a graded submodule of M and $A = (N : M)$. Then $Gr_M(N) = \sqrt{A}M = \sqrt{(N : M)}M$.

Proof. Without loss of generality we can assume that M is faithful by [7, p. 155]. Let P denote the collection of all graded prime ideals P of R such that $A \subseteq P$. If $B = \sqrt{A}$, then $B = \bigcap_{P \in P} P$. Choose $P \in P$. If $PM = M$, then $Gr_M(N) \subseteq PM$. If $PM \neq M$, then since N is a graded submodule of M and M is Gr-multiplicative then $N = AM \subseteq PM$. Therefore by Lemma 1.1, since PM is a prime submodule of M, then $Gr_M(N) \subseteq PM$. Thus $BM = \bigcap_{P \in P} PM$, by [7, Corollary 4.2.8]. So $Gr_M(N) \subseteq BM$.

Now let K be a graded prime submodule of M containing N. Then there exists a graded prime ideal $Q = (K : M)$ of R such that $K = QM$. We show that $A \subseteq Q$. By Lemma 3.1, $Q = (QM : M)$. Let $r \in A = (N : M)$. So $rM \subseteq N \subseteq K = QM$, then $r \in (QM : M) = Q$. Thus $A \subseteq Q$. As Q is a graded prime ideal containing A, so $B = \sqrt{A} \subseteq Q$. Therefore $BM \subseteq QM = K$. Hence, since K is an arbitrary graded prime submodule of M containing N, then $BM \subseteq Gr_M(N)$.

Theorem 3.3. Let M be a Gr-multiplicative R-module. Then M is a Gr-McCasland module.

Proof. Let N be a graded submodule of M. Then $RGE_M(N) \subseteq Gr_M(N)$ by lemma 2.2, so it suffices to show that $Gr_M(N) \subseteq RGE_M(N)$. Let $x \in Gr_M(N)$. Since $Gr_M(N) = \sqrt{(N : M)}M$, then $x = \sum_{j=1}^{k} r_j x_j$ such that $r_j \in \sqrt{(N : M)}$, $x_j \in M$. As $\sqrt{(N : M)}M$ are graded, so without loss of generality we can assume that $x = \sum_{i=1}^{n} r_{g_i} x_{g_i}$, such that $r_{g_i} \in h(R) \cap \sqrt{(N : M)}$ and $x_{g_i} \in h(M)$ for each $i = 1, 2, ..., n$. Since $r_{g_i} \in \sqrt{(N : M)}$, so there exists $n_i \in N$ such that $r_{g_i}^{n_i} M \subseteq N$ for each $i = 1, 2, ..., n$. Therefore $r_{g_i}^{n_i} x_{g_i} \in N$ and $r_{g_i} x_{g_i} \in GE_M(N) \subseteq RGE_M(N)$ for each $i = 1, 2, ..., n$. Thus $x \in RGE_M(N)$.
4 Gr-Semisimple Modules

In this section we list some basic properties of graded Semisimple module and we will show that every Gr- Semisimple Module is McCasland.

Lemma 4.1. Let N_1, N_2 be graded submodules of a graded R-module M and $N_1 \subseteq N_2$. Then

(i) $RGE_{M/N_1}(N_2/N_1) = RGE_M(N_2)/N_1$

(ii) $Gr_{M/N_1}(N_2/N_1) = Gr_M(N_2)/N_1$

Proof. (i) Let $y \in RGE_{M/N_1}(N_2/N_1)$. So $y = \sum_{i=1}^{k} r_{g_i}(m_{g_i'} + N_1)$ such that $r_{g_i} \in h(R)$, $m_{g_i'} \in h(M)$ and there exists $n_i \in N$ such that $r_{g_i} m_{g_i'} N_i \in N_2/N_1$ for each $i = 1, 2, ..., k$. Thus $r_{g_i} m_{g_i'} \in N_2$ and $r_{g_i} m_{g_i'} \in RGE_M(N_2)$. So $y = \sum_{i=1}^{k} r_{g_i}(m_{g_i'} + N_1) \in RGE_M(N_2)/N_1$.

Now let $x \in RGE_M(N_2)/N_1$. So $x = \sum_{i=1}^{t} s_{g_i}(m_{g_i'} + N_1)$ such that $s_{g_i} \in h(R)$, $m_{g_i'} \in h(M)$ and there exists $n_i \in N$ such that $s_{g_i} m_{g_i'} \in N_2$ for each $i = 1, 2, ..., t$. So $s_{g_i} m_{g_i'} \in N_2/N_1$ and $s_{g_i}(m_{g_i'} + N_1) \in RGE_{M/N_1}(N_2/N_1)$. Therefore $x = \sum_{i=1}^{t} s_{g_i}(m_{g_i'} + N_1) \in RGE_{M/N_1}(N_2/N_1)$.

(ii) It is clear by [2, lemma 2.8].

Corollary 4.2. Let N, N' be graded submodules of graded R-modules M, M' such that $M/N \cong M'/N'$. Then $Gr_M(N) = RGE_M(N)$ if and only if $Gr_{M'}(N') = RGE_{M'}(N')$.

Proof. By lemma 4.1, we have the following implications:

$Gr_M(N) = RGE_M(N) \Leftrightarrow Gr_M(N)/N = RGE_M(N)/N$

$\Leftrightarrow Gr_{M/N}(0) = RGE_{M/N}(0) \Leftrightarrow Gr_{M'/N'}(0) = RGE_{M'/N'}(0)$

$\Leftrightarrow Gr_{M'}(N')/N' = RGE_{M'}(N')/N' \Leftrightarrow Gr_{M'}(N') = RGE_{M'}(N')$.

Corollary 4.3. Let N, L be graded submodule of graded R-module M such that $M = N + L$ and $Gr_{L}(N \cap L) = RGE_{L}(N \cap L)$. Then $Gr_{M}(N) = RGE_{M}(N)$.

Proof. Note that $M/N = (N + L)/N \cong L/N \cap L$. Apply Corollary 4.2.
Lemma 4.4. For a graded R-module M, we have
\[\text{GRad}(M) = \bigcap \{ K \subseteq M \mid K \text{ is a graded maximal submodule of } M \} = \sum \{ L \subseteq M \mid L \text{ is a } Gr - \text{small submodule of } M \}. \]

Proof. The first row is just the definition. If $L \ll_{Gr} M$ and K is a graded maximal submodule of M not containing L, then $K \subseteq L + K \subseteq M$ so $L + K = M$. As K is a graded maximal submodule, then $K = M$, since $L \ll_{Gr} M$. Hence every Gr-small submodule of M is contained in $\text{GRad}(M)$.

Now assume that $m \in \text{GRad}(M) \cap h(R)$, $U \subseteq M$ with $Rm + U = M$ and U is a graded submodule of M. If $U \neq M$, set $A = \{ K \mid K \text{ is a graded submodule of } M \text{ with } U \subseteq K \text{ and } m \notin K \}$. Then $A \neq \emptyset$. By Zorn’s lemma there is a graded submodule L of M maximal with respect to $U \subseteq L$ and $m \notin L$. So $M = Rm + L$, now we show that L is a graded maximal submodule of M. Let L' be a graded submodule of M and $L \subseteq L' \subseteq M$. We divide the proof into two cases:

Case 1. If $m \notin L'$, then $L' \in A$ and $L = L'$.

Case 2. If $m \in L'$, then $M = Rm + L'$ and so $L' = M$.

So L is a graded maximal submodule of M. But $m \in \text{GRad}(M) \subseteq L$ is a contradiction. So $U = M$ and $Rm \ll_{Gr} M$. Since $\text{GRad}(M)$ is a graded submodule of M and every element of $\text{GRad}(M)$ is a finite sum of homogenous elements, therefore the result holds.

Lemma 4.5. Let M be a Gr-semisimple R-module. Then $\text{GRad}(M) = 0$.

Proof. Since M is a Gr-semisimple R-module so M has no proper Gr-small submodule, then by lemma 4.4, $\text{GRad}(M) = 0$.

Lemma 4.6. Let M be a graded R-module and M' be a graded submodule of M. If P is a graded prime submodule of M, then $P \cap M'$ is a graded prime submodule of M'.

Proof. Set $L = P \cap M'$. Since P and M' are graded submodules of M so L is a graded submodule of M. Let $rm' \in L$ for some $r \in h(R)$ and $m \in h(M') \subseteq h(M)$. Then $rm' \in P$. So $m' \in P$ or $rM' \subseteq P$ since P is a graded prime submodule of M. Thus $m' \in L$ or $rM' \subseteq L$. Therefore $L = P \cap M'$ is a graded prime submodule of M'.

Lemma 4.7. Let $M = M' \oplus M''$ be a graded R-module, M' and M'' be graded submodules of M such that M'' is a Gr-semisimple module. Then $\text{Gr}_M(N) = \text{Gr}_{M'}(N)$ for any graded submodule N of M'.

Proof. Let N be a graded submodule of M'. Since M'' is Gr-semisimple and $\text{GRad}(M'') = 0$, so there exists a collection of graded maximal submodules $P_i(i \in I)$ of M'' such that $\bigcap_{i \in I} P_i = 0$ and there exists a collection of graded prime submodules $Q_j(j \in J)$ of $M' \oplus P_i$ such that $\text{Gr}_{M'}(N) = \bigcap_{j \in J} Q_j$. We show that for all $i \in I$ and $j \in J$, $M' \oplus P_i$ and $Q_j \oplus M''$ are graded prime submodules of M containing N. First we show that for each $i \in I$, $L' = M' \oplus P_i$ is a graded prime submodule of M containing N, the proof for $Q_j \oplus M''$ is the same.
Let \(rm \in L' = M' \oplus P_i \) for some \(r \in h(R) \) and \(m \in h(M) \). So \(m = m' + m'' \) for some \(m' \in M' \) and \(m'' \in M'' \). Thus \(rm-m' = rm'' \in P_i \). If \(m'-m' = 0 \), then \(m = m' + (m - m') \in M' \oplus P_i \). If \(rM'' \subseteq P_i \), then \(rM = r(M' \oplus M'') \subseteq M' \oplus P_i \). Hence:

\[
Gr_M(N) \subseteq \left(\bigcap_{i \in I} (M' \oplus P_i) \right) \cap \left(\bigcap_{j \in J} (Q_j \oplus M'') \right) = \bigcap_{j \in J} Q_j = Gr_M(N).
\]

By lemma 4.6, \(Gr_M(N) \subseteq Gr_M(N) \).

Let \(M \) and \(M' \) be two graded \(R \)-modules. A morphism of graded \(R \)-modules \(f : M \to M' \) is a morphism of \(R \)-modules verifying \(f(M_g) \subseteq M'_g \) for every \(g \in G \).

Lemma 4.8. Let \(M \) and \(M' \) be two graded \(R \)-modules and \(N \) be a graded \(R \)-submodule of \(M \). If \(f : M \to M' \) is a morphism of graded \(R \)-modules, then \(f(N) \) is a graded submodule of \(M' \).

Proof. Let \(N = \bigoplus_{g \in G} N_g \) such that \(N_g = N \cap M_g \) for all \(g \in G \). Since \(f \) is a morphism of graded \(R \)-modules, so \(f(N_g) = f(N) \cap M'_g \). We show that \(f(N) = \bigoplus_{g \in G} f(N_g) \). Let \(g \in f(N) \). Then \(y = \sum_{g \in G} m'_g \) such that \(m'_g \in M' \) for all \(g \in G \) and \(y = f(n) \) for some \(n \in N \). Thus \(n = \sum_{g \in G} n_g \), since \(N \) is graded. Without loss of generality we can assume that \(n = \sum_{i=1}^{n} n_{g_i} \) and \(n_g = 0 \) for each \(g \notin \{g_1, ..., g_n\} \). Therefore \(f(n) = \sum_{i=1}^{n} f(n_{g_i}) = y \). But every element of \(M' \) has unique representation, so \(m'_{h_i} = f(n_{g_i}) \in f(N_{g_i}) \subseteq f(N) \) for some \(h_i \in G \) and \(m'_{h_i} = 0 \in f(N) \) for all \(h_i \notin \{h_1, ..., h_n\} \). Therefore \(m'_g \in f(N) \) for all \(g \in G \) and \(f(N) \) is a graded submodule of \(M' \).

Theorem 4.9. Let \(M = M' \oplus M'' \) be a graded \(R \)-module, \(M' \) a \(Gr \)-McCasland \(R \)-submodule and \(M'' \) a \(Gr \)-semisimple \(R \)-submodule of \(M \). Then \(M \) is a \(Gr \)-McCasland module.

Proof. Let \(N \) be a graded \(R \)-submodule of \(M \). It suffices to show that \(Gr_M(N) \subseteq RGE_M(N) \). Let \(\pi : M \to M'' \) be the natural epimorphism. It is clear that \(\pi \) is a morphism of graded modules. Thus \(\pi(N) \subseteq M'' \) is a graded submodule of \(M'' \) by lemma 4.8. So there exists a graded submodule \(N'' \) of \(M'' \) such that \(M'' = \pi(N) \oplus N'' \). Then \(M = M' \oplus M'' = M' \oplus \pi(N) \oplus N'' \). We show that \(M = N + (M' \oplus N'') \). Let \(m \in M \). So there exists \(m' \in M' \), \(x \in \pi(N) \) and \(n'' \in N'' \) such that \(m = m' + x + n'' \). Since \(x \in \pi(N) \), so \(\pi(n) = x \) for some \(n \in N \). Thus \(n = n_1 + n_2 \) for some \(n_1 \in M' \), \(n_2 \in M'' \) and \(n_2 = \pi(n) = x \). So \(m = m' + x + n'' = m' + n - n_1 + n'' = n + (m' - n_1) + n'' \), then \(m \in N + (M' \oplus N'') \).

Now consider submodule \(L = N \cap (M' \oplus N'') \) of graded \(R \)-module \(H = M' \oplus N'' \). \(L \) is a graded submodule because \(N \), \(M' \) and \(N'' \) are graded. Let \(\pi' : H \to N'' \) be the natural epimorphism. Then \(\pi'(L) \subseteq \pi(N) \cap N'' = 0 \), so \(L \subseteq M' \). As \(N'' \) is \(Gr \)-semisimple and \(M' \) is a \(Gr \)-McCasland \(R \)-module, then by lemma 4.7, \(Gr_H(L) = Gr_M(L) = RGE_M(L) \subseteq RGE_H(L) \). So \(Gr_H(L) = RGE_H(L) \). Then by corollary 4.3, \(Gr_M(N) = RGE_M(N) \) since \(M = N + H \) and \(L = N \cap H \).

Corollary 4.10. Let \(R \) be a graded \(R \)-module. Then every \(Gr \)-semisimple \(R \)-module is a \(Gr \)-McCasland module.
5 Gr-Divisible Modules

In this section we list some basic properties of graded divisible Module and we will show that every Gr- divisible Module is McCasland.

Let R be a graded ring. We say that R is a Gr-integral domain whenever $a, b \in h(R)$ with $ab = 0$ implies that either $a = 0$ or $b = 0$.

Let R be a Gr-integral domain. A graded R-module M is called Gr-divisible if $aM = M$ for all $0 \neq a \in h(R)$.

If R is a graded ring and M is a graded R-module, the subset $T(M)$ of M is defined by $T(M) = \{ m \in M : rm = 0 \text{ for some } 0 \neq r \in h(R) \}$.

Clearly, if R is a Gr-integral domain, then $T(M)$ is a graded submodule of M. $T(M)$ is called the Gr-torsion submodule of M. A graded R-module M is called a Gr-torsion module if $M = T(M)$ and is called Gr-torsion free module if $T(M) = 0$.

Lemma 5.1. Let R be a Gr-integral domain, M be a graded R-module and N a proper graded submodule of M. Then N is a graded prime submodule of M or if $T(M/N) = L/N$ is the Gr-torsion submodule of M/N, then $L = M$ or L is a graded prime submodule of M containing N.

Proof. By the definition $T(M/N) = \{ m + N \in M/N : rm \in N \text{ for some } 0 \neq r \in h(R) \}$. We divide the proof into two cases:

Case 1 Let the graded R-module M/N be Gr-torsion free. Then $T(M/N) = 0$.

If $I = (N : M) \neq 0$, then there exists $0 \neq r \in I$ such that $rM \subseteq N$. So for every $m \in M$, $r(m + N) = rm + N = N$, then $m + N \in T(M/N) = 0$ and $m \in N$. Therefore $N = M$ is a contradiction. Thus $I = (N : M) = 0$. So M/N is a Gr-torsion free $R \cong R/0$-module and $I = (N : M) = 0$ is a graded prime ideal of R. So by [2, Theorem 2.11], N is a graded prime submodule of M.

Case 2 If M/N isn’t Gr-torsion free R-module, then $T(M/N) = L/N \neq 0$. If M/N is Gr-torsion, then $T(M/N) = M/N$ and $L = M$. If M/N isn’t Gr-torsion, then by [6, Proposition 2.6], $T(M/N)$ is a graded prime submodule of M. Then by [2, Lemma 2.8], L is a graded prime submodule of M containing N.

Lemma 5.2. Let R be a graded ring and M, M' be two graded R-modules and $\varphi : M \rightarrow M'$ be an epimorphism of graded modules. Let N be a graded submodule of M such that $\text{Ker}\varphi \subseteq N$. Then

(i) If P is a graded prime submodule of M containing N, then $\varphi(P)$ is a graded prime submodule of M' containing $\varphi(N)$.

(ii) If P' is a graded prime submodule of M' containing $\varphi(N)$, then $\varphi^{-1}(P')$ is a graded prime submodule of M containing N.

Proof. The proof is a direct consequence of the definition.

Lemma 5.3. Let M, M' be graded R-modules and N' be a graded submodule of M'. Let $\varphi : M \rightarrow M'$ be an epimorphism of graded R-modules. Then

(i) $\varphi^{-1}(\text{Gr}_{M'}(N')) = \text{Gr}_M(\varphi^{-1}(N'))$

(ii) $\varphi^{-1}(\text{RGE}_M(N')) = \text{RGE}_M(\varphi^{-1}(N'))$
Proof. (i) Let $x \in \text{Gr}_{M}(\varphi^{-1}(N'))$ and L be a graded prime submodule of M' containing N'. Then by lemma 5.2, $\varphi^{-1}(L)$ is a graded prime submodule of M containing $\varphi^{-1}(N')$. So $\text{Gr}_{M}(\varphi^{-1}(N')) \subseteq \varphi^{-1}(L)$, then $x \in \varphi^{-1}(L)$ so $\varphi(x) \in L$.

Therefore $\varphi(x) \in \text{Gr}_{M}(N')$, then $x \in \varphi^{-1}(\text{Gr}_{M}(N'))$.

Now suppose that $y \in \varphi^{-1}(\text{Gr}_{M}(N'))$ and K be a graded prime submodule of M containing $\varphi^{-1}(N')$. It is clear that $\text{Ker} \varphi \subseteq \varphi^{-1}(N')$, so by lemma 5.2, $\varphi(K)$ is a graded prime submodule of M' containing N'. Thus $\text{Gr}_{M}(N') \subseteq \varphi(K)$, then $\varphi(y) \in \text{Gr}_{M}(N') \subseteq \varphi(K)$. So there exists $m \in K$ such that $\varphi(y) = \varphi(m)$, then $y - m \in \text{Ker} \varphi \subseteq \varphi^{-1}(N') \subseteq K$. Therefore $y \in K$, so $y \in \text{Gr}_{M}(\varphi^{-1}(N'))$.

(ii) Let $rm \in GE_{M}(\varphi^{-1}(N'))$ for some $m \in h(M)$ and $r \in h(R)$. So there exists $n \in N$ such that $rm \in \varphi^{-1}(N')$, then $rm \varphi = \varphi(rm) \in N'$, so $\varphi(rm) = r \varphi(m) \in RGE_{M}(N')$ since $r \in h(R)$ and $\varphi(m) \in h(M')$. Therefore $rm \in \varphi^{-1}(RGE_{M}(N'))$.

Now let $x \in \varphi^{-1}(RGE_{M}(N'))$. So $\varphi(x) \in RGE_{M}(N')$. Without loss of generality we can consider $\varphi(x) = \sum_{i=1}^{k} g_{i} x_{i}'$ such that $g_{i} \in h(R)$ and $x_{i}' \in h(M')$ for each $i = 1, 2, ..., k$. So there exists $n_{i} \in N$ such that $r_{g_{i}}^{n_{i}} x_{i}' \in N'$ for each $i = 1, 2, ..., k$. Since φ is an epimorphism of graded R-modules and $x_{i}' \in h(M')$, then there exists $x_{i}' \in h(M)$ such that $\varphi(x_{i}') = x_{i}'$. So $\varphi(r_{g_{i}}^{n_{i}} x_{i}') = r_{g_{i}}^{n_{i}} x_{i}' \in N'$. Therefore $r_{g_{i}} x_{i}' \in GE_{M}(\varphi^{-1}(N'))$ for each $i = 1, 2, ..., k$. On the other hand, $\varphi(x - \sum_{i=1}^{k} g_{i} x_{i}') = 0$. So $x - \sum_{i=1}^{k} g_{i} x_{i}' \in \text{Ker} \varphi \subseteq \varphi^{-1}(N') \subseteq RGE_{M}(\varphi^{-1}(N'))$. Therefore $x \in RGE_{M}(\varphi^{-1}(N'))$.

Let M be a graded R-module. Then a graded homomorphic image of M is a graded R-module M' with an epimorphism of graded modules $\varphi : M \rightarrow M'$.

Theorem 5.4. Let M be a Gr-McCasland R-module. Then every graded homomorphic image of M is Gr-McCasland.

Proof. Let M' be a graded homomorphic image of M. Then there exists an epimorphism of graded modules $\varphi : M \rightarrow M'$. We show that M' is an Gr-McCasland module. Let N' be a graded submodule of M'. Then $\varphi^{-1}(N')$ is a graded submodule of M and since M is Gr-McCasland R-module, then $\text{Gr}_{M}(\varphi^{-1}(N')) = RGE_{M}(\varphi^{-1}(N'))$. So by lemma 5.3, $\varphi^{-1}(\text{Gr}_{M}(N')) = \varphi^{-1}(RGE_{M}(N'))$. Then $\text{Gr}_{M}(N') = RGE_{M}(N')$ since φ is an epimorphism.

Theorem 5.5. Let G be a group and R be a Gr-integral domain. Let $M = M_{1} + M_{2}$ be a graded R-module, M_{1} a Gr-McCasland submodule of M and M_{2} be a Gr-divisible submodule of M. Then M is a Gr-McCasland R-module.

Proof. Define $\alpha : M_{1} \rightarrow M/M_{2}$ with $\alpha(s_{1}) = s_{1} + M_{2}$ for every element $s_{1} \in M_{1}$. It is easy to see that α is an epimorphism of graded modules. Since M_{1} is Gr-McCasland, so by Theorem 5.4, M/M_{2} is Gr-McCasland. Let N be a graded submodule of M. It suffices to show that $\text{Gr}_{M}(N) \subseteq RGE_{M}(N)$. Let $m \in \text{Gr}_{M}(N)$. Then $m + M_{2} \in (\text{Gr}_{M}(N) + M_{2})/M_{2} = \text{Gr}_{M/M_{2}}(N + M_{2}/M_{2}) = RGE_{M/M_{2}}(N + M_{2}/M_{2})$, since M/M_{2} is Gr-McCasland. So $m + M_{2} = \sum_{i=1}^{s} g_{i}^{r}(k_{i}^{r} + M_{2})$ and
Therefore, we divide the proof into two cases:

Case 1 If N is a graded prime submodule of M, then $Gr.M(N) = RGE_M(N) = N$.

Case 2 If $T(M/N) = L/N$ is Gr-torsion submodule of M/N, then $L = M$ or L is a graded prime submodule of M containing N. Therefore $Gr.M(N) \subseteq L$, so $x \in L$ and $x+N \in T(M/N)$. Thus there exists $0 \neq c \in h(R)$ such that $cx \in N$. Since M_2 is Gr-divisible module, so there exists $y \in M_2$ such that $x = cy$ so $c^2y = cx \in N$. Since $y \in M$, without loss of generality we can assume that $y = \sum_{i=1}^{t} m_{g_i}$ and $m_{g_i} = 0$ for each $h \notin \{g_1, \ldots ,g_t\}$ Then $c^2y = \sum_{i=1}^{t} c^2 m_{g_i} \in N$. Then $c^2 m_{g_i} \in N$ for each $i = 1, \ldots , l$, since N is graded. Then $c m_{g_i} \in RGE_M(N)$ for each $i = 1, \ldots , l$. Therefore $x = cy = \sum_{i=1}^{t} c m_{g_i} \in RGE_M(N)$, then $m = x + \sum_{i=1}^{t} r_{g_i} (k_{g_i} - c_i) \in RGE_M(N)$ and $Gr.M(N) \subseteq RGE_M(N)$.

Corollary 5.6. If G is a group and R is a Gr-integrable domain, then every Gr-divisible R-module is a Gr-McCausland module.

Acknowledgement(s): The authors would like to thanks the referee for his useful comments and suggestions on the manuscript.

References

(Received 12 March 2009)

S. Ebrahimi Atani and F. Esmaeili Khalil Saraei
Department of Mathematics,
University of Guilan,
P.O. Box 1914 Rasht, IRAN.
e-mail: esmaiely@guilan.ac.ir