Viscosity Approximation Methods
for Generalized Equilibrium Problems
and Fixed Point Problems of Finite Family
of Nonexpansive Mappings in Hilbert Spaces

U. Inprasit

Keywords: Fixed point; Generalized equilibrium problem; Nonexpansive mapping; Inverse strongly monotone mapping.

2000 Mathematics Subject Classification: 46C05; 47H09; 47H10.

1 Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H and let P_C be the projection of H onto $C.$ A mapping T of H into itself is called nonexpansive if

$$\|Tx - Ty\| \leq \|x - y\|$$

Copyright © 2010 by the Mathematical Association of Thailand. All rights reserved.
for all $x, y \in H$. We denote by $F(T)$ the set of fixed points of T. Goebel and Kirk [7] showed that $F(T)$ is always closed convex and nonempty provided T has a bounded trajectory. Recall that a mapping $A : C \to H$ is called monotone if for all $x, y \in C$,

$$\langle x - y, Ax - Ay \rangle \geq 0.$$

The mapping A is called α-inverse-strongly monotone if there exists a positive real number α such that

$$\langle x - y, Ax - Ay \rangle \geq \alpha\|Ax - Ay\|^2$$

for all $x, y \in C$; see [4, 11, 14]. We know that if $T : C \to C$ is nonexpansive, then $A = I - T$ is $\frac{1}{2}$-inverse strongly monotone; see [15, 16, 17] for more details.

The classical variational inequality problem is to find a $u \in C$ such that

$$\langle Au, v - u \rangle \geq 0 \quad \forall \quad v \in C.$$

The set of solutions of variational inequality is denoted by $VI(C, A)$.

The variational inequality has been extensively studied in the literature; see [3, 5, 14]. Let F be a bifunction of $C \times C$ into \mathbb{R}, where \mathbb{R} is the set of real numbers and a nonlinear mapping $A : C \to H$. The equilibrium problem for $F : C \times C \to \mathbb{R}$ is to find $z \in C$ such that

$$F(z, y) + \langle Az, y - z \rangle \geq 0, \quad \forall \quad y \in C.$$

(1.1)

The set of such $z \in C$ is denoted by EP i.e.,

$$EP = \{z \in C : F(z, y) + \langle Az, y - z \rangle \geq 0, \quad \forall \quad y \in C\}.$$

In the case of $A \equiv 0$, EP is denoted by $EP(F)$. In the case of $F \equiv 0$, EP is denoted by $VI(C, A)$. The problem (1.1) is very general in the sense that it includes, as special cases, optimization problems, variational inequalities, minimax problems, the Nash equilibrium problem in noncooperative games and others; see [2, 12].

For $r > 0$, let $T_r : H \to C$ be defined by

$$T_r(x) = \left\{ z \in C : F(z, y) + \frac{1}{r}\langle y - z, z - x \rangle \geq 0, \quad \forall \quad y \in C \right\}.$$

(1.2)

Combettes and Hirstoaga [6] showed that under some suitable conditions of F, T_r is single-valued and firmly nonexpansive and satisfies $F(T_r) = EP(F)$. Let $\{T_i\}_{i=1}^N$ be a finite family of nonexpansive mappings of C into itself with $\bigcap_{i=1}^N F(T_i) \neq \emptyset$. In 1999, Atsushiba and Takahashi [1] defined the mapping W_n as follows:

$$U_{n,1} = \lambda_{n,1}T_1 + (1 - \lambda_{n,1})I,$$

$$U_{n,2} = \lambda_{n,2}T_2U_{n,1} + (1 - \lambda_{n,2})I,$$

$$U_{n,3} = \lambda_{n,3}T_3U_{n,2} + (1 - \lambda_{n,3})I,$$

$$\vdots$$

$$U_{n,N-1} = \lambda_{n,N-1}T_{N-1}U_{n,N-2} + (1 - \lambda_{n,N-1})I,$$

$$W_n = U_{n,N} = \lambda_{n,N}T_NU_{n,N-1} + (1 - \lambda_{n,N})I,$$
where \(\{ \lambda_n \} \) is \(\subseteq [0, 1] \). This mapping is called the \(W \)-mapping generated by \(T_1, T_2, \ldots, T_N \) and \(\lambda_{n,1}, \lambda_{n,2}, \ldots, \lambda_{n,N} \). In 2000, Takahashi and Shimoji [18] proved that if \(X \) is a strictly convex Banach space, then \(F(W_n) = \bigcap_{i=1}^N F(T_i) \), where

\[0 \leq \lambda_{n,i} < 1, i = 1, 2, \ldots, N. \]

In 2007, Takahashi and Takahashi [19] introduced the following iterative scheme by the viscosity approximation method in a real Hilbert space \(H \). They defined the iterative sequences \(\{ x_n \} \) and \(\{ u_n \} \) as follows: \(x_1 \in H \) and

\[
\begin{align*}
F(u_n, y) + \frac{1}{r_n} (y - u_n, u_n - x_n) &\geq 0, \quad \forall y \in C, \\
x_{n+1} &= \alpha_n f(x_n) + (1 - \alpha_n) Tu_n, \quad \forall n \in \mathbb{N},
\end{align*}
\]

(1.3)

where \(f : H \to H \) is a contraction mapping with \(\{ \alpha_n \} \subseteq [0, 1], \{ r_n \} \subseteq (0, \infty) \). They proved under some suitable conditions on the sequences \(\{ \alpha_n \}, \{ r_n \} \) and bifunction \(F \), that \(\{ x_n \} \) and \(\{ u_n \} \) converge strongly to \(z \in \bigcap_{i=1}^N F(T_i) \cap EP(F) \), where \(z = P_{\bigcap_{i=1}^N F(T_i) \cap EP} u \).

In 2008, Takahashi and Takahashi [20] introduced a hybrid iterative method for finding a common element of \(EP \) and \(F(T) \). They defined \(\{ x_n \} \) as follows: \(u, x_1 \in C \) and

\[
\begin{align*}
F(z_n, y) + (Ax_n, y - z_n) + \frac{1}{\lambda_n} (y - z_n, z_n - x_n) &\geq 0, \quad \forall y \in C, \\
x_{n+1} &= \beta_n + (1 - \beta_n) Tu_n, \quad \forall n \in \mathbb{N},
\end{align*}
\]

(1.4)

where \(\{ \alpha_n \} \subseteq [0, 1], \{ \beta_n \} \subseteq [0, 1], \{ \lambda_n \} \subseteq [0, 2\alpha] \) and proved strong convergence of the scheme (1.4) to \(z \in \bigcap_{i=1}^N F(T_i) \cap EP \), where \(z = P_{\bigcap_{i=1}^N F(T_i) \cap EP} u \).

In 2009, Kangtunyakarn and Suantai [10] defined the mappings \(S_n \) as follows:

\[
\begin{align*}
U_{n,0} &= I, \\
U_{n,1} &= \alpha_1^{n,1} T_1 U_{n,0} + \alpha_2^{n,1} U_{n,0} + \alpha_3^{n,1} I, \\
U_{n,2} &= \alpha_1^{n,2} T_2 U_{n,1} + \alpha_2^{n,2} U_{n,1} + \alpha_3^{n,2} I, \\
U_{n,3} &= \alpha_1^{n,3} T_3 U_{n,2} + \alpha_2^{n,3} U_{n,2} + \alpha_3^{n,3} I, \\
&\vdots \\
U_{n,N-1} &= \alpha_1^{n,N-1} T_{N-1} U_{n,N-2} + \alpha_2^{n,N-1} U_{n,N-2} + \alpha_3^{n,N-1} I, \\
S_n &= U_{n,N} = \alpha_1^{n,N} T_N U_{n,N-1} + \alpha_2^{n,N} U_{n,N-1} + \alpha_3^{n,N} I
\end{align*}
\]

where \(\alpha_1^{n,j}, \alpha_2^{n,j}, \alpha_3^{n,j} \in [0, 1] \) with \(\alpha_1^{n,j} + \alpha_2^{n,j} + \alpha_3^{n,j} = 1 \). The mapping \(S_n \) is called the \(S \)-mapping generated by \(T_1, T_2, \ldots, T_N \) and \(\alpha_1^{(n)}, \alpha_2^{(n)}, \ldots, \alpha_3^{(n)} \).

If \(\alpha_2^{n,j} = 0, j = 1, 2, \ldots, N-1 \), then the mapping \(S \) reduces to the \(W \)-mapping defined by Atsushiba and Takahashi [1] and if \(\alpha_3^{n,j} = 0, j = 1, 2, \ldots, N \), then the mapping \(S \) reduces to the \(K \)-mapping defined by Kangtunyakarn and Suantai [9].

In this paper, we introduce the iterative scheme as follows. For given \(x_1 \in C \), let \(\{ z_n \} \) and \(\{ x_n \} \subseteq C \) be sequences generated by

\[
\begin{align*}
F(z_n, y) + (Ax_n, y - z_n) + \frac{1}{\lambda_n} (y - z_n, z_n - x_n) &\geq 0, \quad \forall y \in C, \\
x_{n+1} &= \alpha_n f(x_n) + \beta_n x_n + (1 - \alpha_n - \beta_n) S_n z_n, \quad \forall n \in \mathbb{N},
\end{align*}
\]

(1.5)
where \(\{ \alpha_n \} \), \(\{ \beta_n \} \subset [0, 1] \) and \(\{ \lambda_n \} \subset [0, 2\alpha] \). Using the viscosity approximation method we will find a common element of the set of solutions of the equilibrium problem and the set of fixed points of a finite family of nonexpansive mappings in a Hilbert space. Then, we shall prove a strong convergence theorem which is connected with Kangtunyakarn and Suantai [10] and Takahashi and Takahashi’s results [19].

2 Preliminaries

Let \(C \) be a nonempty closed convex subset of \(H \). Then, for any \(x \in H \), there exists a unique nearest point in \(C \), denoted by \(P_C(x) \), such that

\[
\| x - P_C(x) \| \leq \| x - y \|, \quad \forall y \in C.
\]

Such a \(P_C \) is called the metric projection of \(H \) onto \(C \).

Lemma 2.1. [15] Let \(x \in H \) and \(z \in C \). Then \(P_C(x) = z \) if and only if \(\langle x - z, z - y \rangle \geq 0 \) for all \(y \in C \).

Lemma 2.2. [21] Let \(\{ a_n \} \subset [0, \infty) \), \(\{ b_n \} \subset [0, \infty) \) and \(\{ c_n \} \subset (0, 1) \) be sequences of real numbers such that

\[
a_{n+1} \leq (1 - c_n)a_n + b_n \quad \text{for all } n \in \mathbb{N},
\]

\[
\sum_{n=1}^{\infty} c_n = \infty \quad \text{and} \quad \sum_{n=1}^{\infty} b_n < \infty.
\]

Then \(\lim_{n \to \infty} a_n = 0 \).

For solving the equilibrium problem for a bifunction \(F : C \times C \to \mathbb{R} \), let us assume that \(F \) satisfies the following conditions:

(A1) \(F(x, x) = 0 \) for all \(x \in C \);

(A2) \(F \) is monotone, i.e., \(F(x, y) + F(y, x) \leq 0 \) for all \(x, y \in C \);

(A3) for each \(x, y, z \in C \), \(\lim_{t \to 0} F(tz + (1 - t)x, y) \leq F(x, y) \);

(A4) for each \(x \in C \), \(y \mapsto F(x, y) \) is convex and lower semicontinuous.

Lemma 2.3. [2] Let \(C \) be a nonempty closed convex subset of \(H \) and let \(F \) be a bifunction of \(C \times C \) into \(\mathbb{R} \) satisfying (A1)-(A4). Let \(r > 0 \) and \(x \in H \). Then, there exists \(z \in C \) such that

\[
F(z, y) + \frac{1}{r}\langle y - z, z - x \rangle \geq 0, \quad \forall y \in C.
\]

Lemma 2.4. [6] Assume that \(F : C \times C \to \mathbb{R} \) satisfies (A1)-(A4). For \(r > 0 \) and \(x \in H \), define a mapping \(T_r : H \to C \) as follows:

\[
T_r(x) = \left\{ z \in C : F(z, y) + \frac{1}{r}\langle y - z, z - x \rangle \geq 0, \quad \forall y \in C \right\}
\]
for all $x \in H$. Then, the following hold:

1. T_r is single-valued;
2. T_r is firmly nonexpansive, i.e., for any $x, y \in H$,
 \[\|T_r(x) - T_r(y)\|^2 \leq (T_r(x), T_r(y), x - y); \]
3. $F(T_r) = EP(F)$;
4. $EP(F)$ is closed and convex.

Definition 2.5. Let C be a nonempty convex subset of a real Banach space. Let \(\{T_i\}_{i=1}^N \) be a finite family of nonexpansive mappings of C into itself. For each $j = 1, 2, \ldots, N$, let $\alpha_j = (\alpha_{1j}, \alpha_{2j}, \alpha_{3j})$, where $\alpha_{1j}, \alpha_{2j}, \alpha_{3j} \in [0, 1]$ and $\alpha_{1j} + \alpha_{2j} + \alpha_{3j} = 1$. Kangtunyakarn and Suantai [10] defined the mapping $S: C \to C$ as follows:

\[
\begin{align*}
U_0 &= I \\
U_1 &= \alpha_{11}T_1U_0 + \alpha_{21}U_0 + \alpha_{31}I \\
U_2 &= \alpha_{12}T_2U_1 + \alpha_{22}U_1 + \alpha_{32}I \\
U_3 &= \alpha_{13}T_3U_2 + \alpha_{23}U_2 + \alpha_{33}I \\
& \vdots \\
U_{N-1} &= \alpha_{1(N-1)}T_{N-1}U_{N-2} + \alpha_{2(N-1)}U_{N-2} + \alpha_{3(N-1)}I \\
S &= U_N = \alpha_{1N}T_NU_{N-1} + \alpha_{2N}U_{N-1} + \alpha_{3N}I.
\end{align*}
\]

This mapping is called S-mapping generated by T_1, \ldots, T_N and $\alpha_1, \alpha_2, \ldots, \alpha_N$.

Lemma 2.6. [10] Let C be a nonempty closed convex subset of a strictly convex Banach space. Let \(\{T_i\}_{i=1}^N \) be a finite family of nonexpansive mappings of C into itself with $\bigcap_{i=1}^N F(T_i) \neq \emptyset$ and let $\alpha_j = (\alpha_{1j}, \alpha_{2j}, \alpha_{3j}), j = 1, 2, 3, \ldots, N$, where $\alpha_{1j}, \alpha_{2j}, \alpha_{3j} \in [0, 1]$, $\alpha_{1j} + \alpha_{2j} + \alpha_{3j} = 1, \alpha_{3j} \in (0, 1)$ for all $j = 1, 2, \ldots, N$. Let S be the S-mapping generated by T_1, \ldots, T_N and $\alpha_1, \alpha_2, \ldots, \alpha_N$. Then $F(S) = \bigcap_{i=1}^N F(T_i)$.

Lemma 2.7. [10] Let C be a nonempty closed convex subset of Banach space. Let \(\{T_i\}_{i=1}^N \) be a finite family of nonexpansive mappings of C into itself and for each $n \in \mathbb{N}$ and $j \in \{1, 2, \ldots, N\}$, let $\alpha_{ij}^{(n)} = (\alpha_{1ij}^{(n)}, \alpha_{2ij}^{(n)}, \alpha_{3ij}^{(n)})$, $\alpha_j = (\alpha_{1j}, \alpha_{2j}, \alpha_{3j})$, where $\alpha_{1ij}, \alpha_{2ij}, \alpha_{3ij} \in [0, 1], \alpha_{1ij}, \alpha_{2ij}, \alpha_{3ij} \in [0, 1], \alpha_{1ij} + \alpha_{2ij} + \alpha_{3ij} = 1$ and $\alpha_{1ij} + \alpha_{2ij} + \alpha_{3ij} = 1$. Suppose $\alpha_{1ij}^{(n)} \to \alpha_{1ij}$ as $n \to \infty$ for $i = 1, 2, 3$ and $j = 1, 2, 3, \ldots, N$. Let S and S_n be the S-mappings generated by T_1, T_2, \ldots, T_N and $\alpha_1, \alpha_2, \ldots, \alpha_N$ and T_1, T_2, \ldots, T_N and $\alpha_1^{(n)}, \alpha_2^{(n)}, \ldots, \alpha_N^{(n)}$, respectively. Then $\lim_{n \to \infty} \|S_nx - Sx\| = 0$ for all $x \in C$.

3 Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let $F: C \times C \to \mathbb{R}$ be a bifunction satisfying conditions (A1)-(A4). Let A
be an α-inverse strongly monotone mapping of C into H and let $\{T_i\}_{i=1}^N$ be a finite family of nonexpansive mappings of C into itself with $\cap_{i=1}^N F(T_i) \cap EP \neq \emptyset$. For $j = 1, 2, \ldots, N$, let $\alpha_j^{(n)} = (\alpha_1^{n,j}, \alpha_2^{n,j}, \alpha_3^{n,j})$ be such that $\alpha_1^{n,j}, \alpha_2^{n,j}, \alpha_3^{n,j} \in [0, 1]$, $\alpha_1^{n,j} + \alpha_2^{n,j} + \alpha_3^{n,j} = 1$, $\{\alpha_i^{n,j}\}_{j=1}^N \subset [\eta_1, \theta_1]$ with $0 < \eta_1 \leq \theta_1 < 1$, $\{\alpha_i^{n,N}\}_{i=1}^N \subset [\eta_N, 1]$ with $0 < \eta_N \leq 1$ and $\{\alpha_i^{n,j}\}_{j=1}^N \subset [0, \theta_3]$ with $0 \leq \theta_3 < 1$. Let f be a contraction of H into itself and let S_n be the S-mappings generated by T_1, T_2, \ldots, T_N and $\alpha_1^{(n)}, \alpha_2^{(n)}, \ldots, \alpha_N^{(n)}$. Let $x_1 \in C$ and $\{z_n\}, \{x_n\} \subset C$ be sequences generated by

$$
\begin{cases}
F(z_n, y) + \langle Ax_n, y - z_n \rangle + \frac{1}{\lambda_n} \langle y - z_n, z_n - x_n \rangle \geq 0, \quad \forall y \in C, \\
x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + (1 - \alpha_n - \beta_n) S_n z_n, \quad \forall n \in \mathbb{N},
\end{cases}
$$

(3.1)

where $\{\alpha_n\}, \{\beta_n\} \subset [0, 1]$ and $\{\lambda_n\} \subset [0, 2\alpha]$ satisfy the following conditions:

(i) $0 < a \leq \lambda_n \leq b < 2\alpha$, $0 < c \leq \beta_n \leq d < 1$;

(ii) $\lim_{n \to \infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$, and $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$;

(iii) $\lim_{n \to \infty} \frac{\lambda_n}{\lambda_{n+1}} = 1$;

(iv) $|\alpha_1^{n+1,j} - \alpha_1^{n,j}| \to 0$ and $|\alpha_3^{n+1,j} - \alpha_3^{n,j}| \to 0$ as $n \to \infty$, for all $j \in \{1, 2, 3, \ldots, N\}$.

Then $\{x_n\}$ converges strongly to $z \in \cap_{i=1}^N F(T_i) \cap EP$, where $z = P_{\cap_{i=1}^N F(T_i) \cap EP} f(z)$.

Proof. Let $Q = P_{\cap_{i=1}^N F(T_i) \cap EP}$. Note that f is a contraction with coefficient $k \in [0, 1)$. Then

$$
\|Qf(x) - Qf(y)\| \leq \|f(x) - f(y)\| \leq \alpha \|x - y\|
$$

for all $x, y \in H$. Thus Qf is a contraction of H into itself. Since H is complete, there exists a unique element $z \in H$ such that $z = Qf(z)$. Such a $z \in H$ is an element of C.

Next, we show that $(I - \lambda_n A)$ is nonexpansive. Let $x, y \in C$. Since A is α-inverse strongly monotone and $\lambda_n < 2\alpha$ for all $n \in \mathbb{N}$, we obtain

$$
\|(I - \lambda_n A)x - (I - \lambda_n A)y\|^2 = \|x - y - \lambda_n (Ax - Ay)\|^2
$$

$$
= \|x - y\|^2 - 2\lambda_n \langle x - y, Ax - Ay \rangle + \lambda_n^2 \|Ax - Ay\|^2
$$

$$
\leq \|x - y\|^2 - 2\alpha \lambda_n \|Ax - Ay\|^2 + \lambda_n^2 \|Ax - Ay\|^2
$$

$$
= \|x - y\|^2 + \lambda_n (\lambda_n - 2\alpha) \|Ax - Ay\|^2
$$

$$
\leq \|x - y\|^2.
$$

Therefore $\|(I - \lambda_n A)x - (I - \lambda_n A)y\|^2 \leq \|x - y\|^2$ for all $x, y \in C$. Thus $(I - \lambda_n A)$ is nonexpansive. Since

$$
F(z_n, y) + \langle Ax_n, y - z_n \rangle + \frac{1}{\lambda_n} \langle y - z_n, z_n - x_n \rangle \geq 0, \quad \forall y \in C,
$$

we obtain

$$
F(z_n, y) + \frac{1}{\lambda_n} \langle y - z_n, z_n - (I - \lambda_n A)x_n \rangle \geq 0, \quad \forall y \in C.
$$
By Lemma 2.4, we have $z_n = T_{\lambda_n}(x_n - \lambda_n Ax_n)$ for all $n \in \mathbb{N}$.

Let $z \in \cap_{i=1}^{N} F(T_i) \cap EP$. Then $F(z, y) + \langle y - z, Az \rangle \geq 0$ for all $y \in C$. So $F(z, y) + \frac{1}{\lambda_n}(y - z, z - z + \lambda_n Az) \geq 0$ for all $y \in C$. Again by Lemma 2.4, we obtain $z = T_{\lambda_n}(z - \lambda_n Az)$. Since $I - \lambda_n A$ and T_{λ_n} are nonexpansive, we have

$$\|z_n - z\|^2 = \|T_{\lambda_n}(x_n - \lambda_n Ax_n) - T_{\lambda_n}(z - \lambda_n Az)\|^2 \leq \|x_n - z\|^2$$

and hence $\|z_n - z\| \leq \|x_n - z\|$. This implies that

$$\|x_{n+1} - z\|^2 = \|\alpha_n(f(x_n) - z) + \beta_n(x_n - z) + (1 - \alpha_n - \beta_n)(S_n z_n - z)\| \leq \alpha_n \|f(x_n) - z\| + \beta_n \|x_n - z\| + (1 - \alpha_n - \beta_n) \|z_n - z\| \leq \alpha_n \|x_n - z\| + \beta_n \|f(z) - z\| + (1 - \alpha_n) \|x_n - z\|$$

Putting $K = \max\{\|x_1 - z\|, \frac{1}{1-k} \|f(z) - z\|\}$. By (3.2), we can show by induction that $\|x_n - z\| \leq K$ for all $n \in \mathbb{N}$. This implies that $\{x_n\}$ is bounded. Hence $\{Ax_n\}, \{S_n z_n\}, \{f(x_n)\}$ are also bounded.

Next, we shall show that $\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0$. Putting $u_n = x_n - \lambda_n Ax_n$. Then, we have $z_{n+1} = T_{\lambda_n+1}(x_{n+1} - \lambda_{n+1} Ax_{n+1}) = T_{\lambda_n+1}u_{n+1}$, and $z_n = T_{\lambda_n}(x_n - \lambda_n Ax_n) = T_{\lambda_n}u_n$. Thus

$$\|z_{n+1} - z_n\| = \|T_{\lambda_n+1}u_{n+1} - T_{\lambda_n}u_n\| \leq \|T_{\lambda_n+1}u_{n+1} - T_{\lambda_n+1}u_n\| + \|T_{\lambda_n+1}u_n - T_{\lambda_n}u_n\| \leq \|u_{n+1} - u_n\| + \|T_{\lambda_n+1}u_n - T_{\lambda_n}u_n\|. \quad (3.3)$$

Since $I - \lambda_{n+1} A$ is nonexpansive, we obtain

$$\|u_{n+1} - u_n\| = \|x_{n+1} - \lambda_{n+1} Ax_{n+1} - x_n + \lambda_n Ax_n\| = \|(I - \lambda_{n+1} A)x_{n+1} - (I - \lambda_n A)x_n + (\lambda_n - \lambda_{n+1})Ax_n\| \leq \|x_{n+1} - x_n + |\lambda_n - \lambda_{n+1}|Ax_n\|. \quad (3.4)$$

By Lemma 2.4, we obtain

$$F(T_{\lambda_n}u_n, y) + \frac{1}{\lambda_n} \langle y - T_{\lambda_n}u_n, T_{\lambda_n}u_n - u_n \rangle \geq 0, \quad \forall y \in C$$

and

$$F(T_{\lambda_{n+1}}u_n, y) + \frac{1}{\lambda_{n+1}} \langle y - T_{\lambda_{n+1}}u_n, T_{\lambda_{n+1}}u_n - u_n \rangle \geq 0, \quad \forall y \in C.$$
and
\[F(T_{\lambda_{n+1}}u_n, T_{\lambda_n}u_n) + \frac{1}{\lambda_{n+1}} (T_{\lambda_n}u_n - T_{\lambda_{n+1}}u_n, T_{\lambda_{n+1}}u_n - u_n) \geq 0. \] (3.6)

Summing up (3.5) and (3.6) and using (A2), we obtain
\[\frac{1}{\lambda_{n+1}} (T_{\lambda_n}u_n - T_{\lambda_{n+1}}u_n, T_{\lambda_{n+1}}u_n - u_n) + \frac{1}{\lambda_n} (T_{\lambda_{n+1}}u_n - T_{\lambda_n}u_n, T_{\lambda_n}u_n - u_n) \geq 0, \]
for all \(y \in C \). It follows that
\[\left\langle T_{\lambda_n}u_n - T_{\lambda_{n+1}}u_n, \frac{T_{\lambda_{n+1}}u_n - u_n}{\lambda_{n+1}} - \frac{T_{\lambda_n}u_n - u_n}{\lambda_n} \right\rangle \geq 0. \]

This implies
\[0 \leq \left\langle T_{\lambda_{n+1}}u_n - T_{\lambda_n}u_n, T_{\lambda_n}u_n - u_n - \frac{\lambda_n}{\lambda_{n+1}} (T_{\lambda_{n+1}}u_n - u_n) \right\rangle \]
\[= \left\langle T_{\lambda_{n+1}}u_n - T_{\lambda_n}u_n, T_{\lambda_n}u_n - T_{\lambda_{n+1}}u_n + \left(1 - \frac{\lambda_n}{\lambda_{n+1}} \right) (T_{\lambda_{n+1}}u_n - u_n) \right\rangle. \]

It follows that
\[\|T_{\lambda_{n+1}}u_n - T_{\lambda_n}u_n\|^2 \leq \left| 1 - \frac{\lambda_n}{\lambda_{n+1}} \right| \|T_{\lambda_{n+1}}u_n - T_{\lambda_n}u_n\| (\|T_{\lambda_{n+1}}u_n\| + \|u_n\|). \]

Hence, we obtain
\[\|T_{\lambda_{n+1}}u_n - T_{\lambda_n}u_n\|^2 \leq \left| 1 - \frac{\lambda_n}{\lambda_{n+1}} \right| L, \] (3.7)
where \(L = \sup\{\|u_n\| + \|T_{\lambda_{n+1}}u_n\| : n \in \mathbb{N}\} \). By (3.3), (3.4) and (3.7), we obtain
\[\|z_{n+1} - z_n\| \leq \|u_{n+1} - u_n\| + \|T_{\lambda_{n+1}}u_n - T_{\lambda_n}u_n\| \]
\[\leq \|x_{n+1} - x_n + b \left| 1 - \frac{\lambda_n}{\lambda_{n+1}} \right| A\|x_n\| + \left| 1 - \frac{\lambda_n}{\lambda_{n+1}} \right| L \] (3.8)

Next, we show that
\[\lim_{n \to \infty} \|S_{n+1}z_n - S_nz_n\| = 0. \]
Viscosity Approximation Methods for Generalized Equilibrium Problems ...

For $k \in \{2, 3, \ldots, N\}$, we have

$$
\|U_{n+1,k}z_n - U_{n,k}z_n\| = \|\alpha_1^{n+1,k}T_kU_{n+1,k-1}z_n + \alpha_2^{n+1,k}U_{n+1,k-1}z_n + \alpha_3^{n+1,k}z_n
$$

$$-
\alpha_1^{n,k}T_kU_{n,k-1}z_n - \alpha_2^{n,k}U_{n,k-1}z_n - \alpha_3^{n,k}z_n\|
$$

$$
= \|\alpha_1^{n+1,k}(T_kU_{n+1,k-1}z_n - T_kU_{n,k-1}z_n) + (\alpha_1^{n+1,k} - \alpha_1^{n,k})T_kU_{n,k-1}z_n
$$

$$+
(\alpha_3^{n+1,k} - \alpha_3^{n,k})z_n + \alpha_2^{n+1,k}(U_{n+1,k-1}z_n - U_{n,k-1}z_n)
$$

$$+
(\alpha_2^{n+1,k} - \alpha_2^{n,k})U_{n,k-1}z_n\|
$$

$$\leq \alpha_1^{n+1,k}\|U_{n+1,k-1}z_n - U_{n,k-1}z_n\| + |\alpha_1^{n+1,k} - \alpha_1^{n,k}|\|T_kU_{n,k-1}z_n\|
$$

$$+
|\alpha_2^{n+1,k} - \alpha_2^{n,k}|\|U_{n+1,k-1}z_n - U_{n,k-1}z_n\|
$$

$$+
|\alpha_3^{n+1,k} - \alpha_3^{n,k}|\|z_n\| + \alpha_2^{n+1,k}\|U_{n+1,k-1}z_n - U_{n,k-1}z_n\|
$$

$$+|\alpha_1^{n+1,k} - \alpha_1^{n,k}|\|T_kU_{n,k-1}z_n\|
$$

$$= (\alpha_1^{n+1,k} + \alpha_2^{n+1,k})\|U_{n+1,k-1}z_n - U_{n,k-1}z_n\|
$$

$$+
|\alpha_1^{n+1,k} - \alpha_1^{n,k}|\|T_kU_{n,k-1}z_n\|
$$

$$+
|\alpha_2^{n+1,k} - \alpha_2^{n,k}|\|U_{n+1,k-1}z_n - U_{n,k-1}z_n\|
$$

$$\leq \|U_{n+1,k-1}z_n - U_{n,k-1}z_n\| + |\alpha_1^{n+1,k} - \alpha_1^{n,k}|\|T_kU_{n,k-1}z_n\|
$$

$$+
|\alpha_2^{n+1,k} - \alpha_2^{n,k}|\|U_{n+1,k-1}z_n - U_{n,k-1}z_n\|
$$

$$+
|\alpha_3^{n+1,k} - \alpha_3^{n,k}|\|z_n\| + (\alpha_1^{n,k} - \alpha_1^{n+1,k})
$$

$$+
(\alpha_3^{n,k} - \alpha_3^{n+1,k})\|z_n\| + \|U_{n,k-1}z_n\|
$$

$$= (\alpha_1^{n+1,k} + \alpha_2^{n+1,k})\|U_{n+1,k-1}z_n - U_{n,k-1}z_n\|
$$

$$+
|\alpha_1^{n+1,k} - \alpha_1^{n,k}|\|T_kU_{n,k-1}z_n\|
$$

$$+
|\alpha_2^{n+1,k} - \alpha_2^{n,k}|\|U_{n+1,k-1}z_n - U_{n,k-1}z_n\|
$$

$$+
|\alpha_3^{n+1,k} - \alpha_3^{n,k}|\|z_n\|
$$

$$+ (\alpha_1^{n,k} - \alpha_1^{n+1,k})(\|U_{n,k-1}z_n\|
$$

$$+ \|z_n\| + \|U_{n,k-1}z_n\|).
$$

By (3.9), we obtain that for each $n \in \mathbb{N}$,

$$
\|S_{n+1}z_n - S_nz_n\| = \|U_{n+1,N}z_n - U_{n,N}z_n\|
$$

$$\leq \|U_{n+1,z_n} - U_{n,z_n}\| + \sum_{j=2}^{N} |\alpha_1^{n+1,j} - \alpha_1^{n,j}|\|T_jU_{n,j-1}z_n\|
$$

$$+
\|U_{n,j-1}z_n\| + \sum_{j=2}^{N} |\alpha_3^{n+1,j} - \alpha_3^{n,j}|\|z_n\| + \|U_{n,j-1}z_n\|
$$

$$= |\alpha_1^{n+1,1} - \alpha_1^{n,1}|\|T_1z_n - z_n\| + \sum_{j=2}^{N} |\alpha_1^{n+1,j} - \alpha_1^{n,j}|\|T_jU_{n,j-1}z_n\|
$$

$$+
\|U_{n,j-1}z_n\| + \sum_{j=2}^{N} |\alpha_3^{n+1,j} - \alpha_3^{n,j}|\|z_n\| + \|U_{n,j-1}z_n\|).
This together with condition (iv), we obtain

$$\lim_{n \to \infty} ||S_{n+1} z_n - S_n z_n|| = 0. \quad (3.10)$$

Next, we show that

$$\lim_{n \to \infty} ||x_{n+1} - x_n|| = 0.$$

By (3.1), we obtain

$$||x_{n+1} - x_n|| = ||\alpha_n f(x_n) + \beta_n x_n + (1 - \alpha_n - \beta_n) S_n z_n - \alpha_{n-1} f(x_{n-1}) - \beta_{n-1} x_{n-1}$$

$$- (1 - \alpha_{n-1} - \beta_{n-1}) S_{n-1} z_{n-1}||$$

$$= ||\alpha_n (f(x_n) - f(x_{n-1})) + \beta_n (x_n - x_{n-1}) + (1 - \alpha_n - \beta_n)$$

$$(S_n z_n - S_{n-1} z_{n-1}) + (\alpha_n - \alpha_{n-1}) f(x_{n-1}) + (\alpha_{n-1} - \alpha_n + \beta_n - \beta_{n-1})$$

$$S_{n-1} z_{n-1} + (\beta_n - \beta_{n-1}) x_{n-1}||$$

$$\leq \alpha_n ||f(x_n) - f(x_{n-1})|| + \beta_n ||x_n - x_{n-1}|| + |1 - \alpha_n - \beta_n|$$

$$||S_n z_n - S_{n-1} z_{n-1}|| + |\alpha_n - \alpha_{n-1}||f(x_{n-1})|| + |\alpha_{n-1} - \alpha_n + \beta_n - \beta_{n-1}||$$

$$||S_{n-1} z_{n-1}|| + |\beta_n - \beta_{n-1}||x_{n-1}||$$

$$\leq (\alpha_n k + \beta_n) ||x_n - x_{n-1}|| + |1 - \alpha_n - \beta_n||S_n z_n - S_{n-1} z_{n-1}||$$

$$+ |\alpha_n - \alpha_{n-1}| K + |\alpha_{n-1} - \alpha_n + \beta_n - \beta_{n-1}| K$$

$$+ |\beta_n - \beta_{n-1}| ||x_{n-1}||,$$

(3.11)

where $K = \sup\{||f(x_n)|| + ||S_n z_n||, n \in \mathbb{N}\}$. By (3.11) and since

$$||S_n z_n - S_{n-1} z_{n-1}|| \leq ||z_n - z_{n-1}|| + ||S_n z_{n-1} - S_{n-1} z_{n-1}||$$

and (3.8), (3.10), Lemma 2.2, conditions (ii) and (iii), we obtain

$$||x_{n+1} - x_n|| \leq (\alpha_n k + \beta_n) ||x_n - x_{n-1}|| + |1 - \alpha_n - \beta_n||(x_{n-1} - x_n||$$

$$+ b \left| 1 - \frac{\lambda_n}{\lambda_{n+1}} \right| ||Ax_n|| + \left| 1 - \frac{\lambda_n}{\lambda_{n+1}} \right| L + ||S_n z_{n-1} - S_{n-1} z_{n-1}||$$

$$+ |\alpha_n - \alpha_{n-1}| K + |\alpha_{n-1} - \alpha_n + \beta_n - \beta_{n-1}| K + |\beta_n - \beta_{n-1}| ||x_{n-1}||$$

$$= (1 - \alpha_n (1 - k)) ||x_{n-1} - x_n|| + (|1 - \alpha_n - \beta_n| b \left| 1 - \frac{\lambda_n}{\lambda_{n+1}} \right| ||Ax_n||$$

$$+ |1 - \alpha_n - \beta_n| \left| 1 - \frac{\lambda_n}{\lambda_{n+1}} \right| L + |1 - \alpha_n - \beta_n||S_n z_{n-1} - S_{n-1} z_{n-1}||$$

$$+ |\alpha_n - \alpha_{n-1}| K + |\alpha_{n-1} - \alpha_n + \beta_n - \beta_{n-1}| K + |\beta_n - \beta_{n-1}| ||x_{n-1}||$$

It follows that

$$\lim_{n \to \infty} ||x_{n+1} - x_n|| = 0. \quad (3.12)$$
Viscosity Approximation Methods for Generalized Equilibrium Problems ...

Next, we shall show that

$$\lim_{n \to \infty} \| S_n z_n - x_n \| = 0.$$

By (3.1), we obtain

$$\| S_n z_n - x_n \| = \| S_n z_n - S_n^{-1} z_{n-1} + S_n^{-1} z_{n-1} - \alpha_{n-1} f(x_{n-1})$$

$$- \beta_{n-1} x_{n-1} - S_n^{-1} z_{n-1} + \alpha_{n-1} S_n^{-1} z_{n-1} + \beta_{n-1} S_n^{-1} z_{n-1} \|$$

$$= \| S_n z_n - S_n^{-1} z_{n-1} + \alpha_{n-1} (S_n^{-1} z_{n-1} - f(x_{n-1}))$$

$$+ \beta_{n-1} (S_n^{-1} z_{n-1} - x_{n-1}) \|$$

$$\leq \| S_n z_n - S_n^{-1} z_{n-1} \| + \alpha_{n-1} \| S_n^{-1} z_{n-1} - f(x_{n-1}) \|$$

$$+ \beta_{n-1} \| S_n^{-1} z_{n-1} - x_{n-1} \|$$

By (3.10), we obtain

$$\lim_{n \to \infty} \| S_n z_n - x_n \| = 0. \quad (3.13)$$

Next, we want to show

$$\lim_{n \to \infty} \| x_n - z_n \| = 0.$$

By monotonicity of A and nonexpansiveness of T_{λ_n}, we obtain

$$\| x_{n+1} - z \|^2 = \| \alpha_n f(x_n) + \beta_n x_n + (1 - \alpha_n - \beta_n) S_n z_n - z \|^2$$

$$\leq \alpha_n \| f(x_n) - z \|^2 + \beta_n \| x_n - z \|^2 + (1 - \alpha_n - \beta_n) \| S_n z_n - z \|^2$$

$$\leq \alpha_n k^2 \| x_n - z \|^2 + \alpha_n \| f(z) - z \|^2 + \beta_n \| x_n - z \|^2$$

$$+ (1 - \alpha_n - \beta_n) \| (x_n - \lambda_n A x_n) - (z - \lambda_n A z) \|^2$$

$$= \alpha_n k^2 \| x_n - z \|^2 + \alpha_n \| f(z) - z \|^2 + \beta_n \| x_n - z \|^2$$

$$+ (1 - \alpha_n - \beta_n) \| (x_n - z) - \lambda_n (A x_n - A z) \|^2$$

$$= \alpha_n k^2 \| x_n - z \|^2 + \alpha_n \| f(z) - z \|^2 + \beta_n \| x_n - z \|^2 + (1 - \alpha_n - \beta_n)$$

$$\left(\| x_n - z \|^2 - 2 \lambda_n \langle x_n - z, A x_n - A z \rangle + \lambda_n^2 \| A x_n - A z \|^2 \right)$$

$$\leq \alpha_n k^2 \| x_n - z \|^2 + \alpha_n \| f(z) - z \|^2 + \beta_n \| x_n - z \|^2 + (1 - \alpha_n - \beta_n)$$

$$\left(\| x_n - z \|^2 - 2 \alpha \lambda_n \| A x_n - A z \|^2 + \lambda_n^2 \| A x_n - A z \|^2 \right)$$

$$= \alpha_n k^2 \| x_n - z \|^2 + \alpha_n \| f(z) - z \|^2 + \beta_n \| x_n - z \|^2 + (1 - \alpha_n - \beta_n)$$

$$\left(\| x_n - z \|^2 + \lambda_n (\lambda_n - 2 \alpha) \| A x_n - A z \|^2 \right)$$

$$= \alpha_n k^2 \| x_n - z \|^2 + \alpha_n \| f(z) - z \|^2 + (1 - \alpha_n \| x_n - z \|^2$$

$$+ (1 - \alpha_n - \beta_n) \lambda_n (\lambda_n - 2 \alpha) \| A x_n - A z \|^2$$

$$\leq \alpha_n k^2 \| x_n - z \|^2 + \alpha_n \| f(z) - z \|^2 + \| x_n - z \|^2$$

$$+ (1 - \alpha_n - \beta_n) \lambda_n (\lambda_n - 2 \alpha) \| A x_n - A z \|^2. \quad (3.14)$$
By (3.14), we obtain
\[
(1 - \alpha_n - \beta_n)\lambda_n (2\alpha - \lambda_n)\|Ax_n - Az\|^2
\leq \alpha_n k^2 \|x_n - z\|^2 + \alpha_n \|f(z) - z\|^2
+ \|x_n - z\|^2 - \|x_{n+1} - z\|^2.
\]
Since \(0 < a \leq \lambda_n \leq b < 2\alpha\) and \(0 < c \leq \beta_n \leq d < 1\), we obtain
\[
(1 - \alpha_n - \beta_n)\lambda_n (2\alpha - \lambda_n)\|Ax_n - Az\|^2
\leq (1 - \alpha_n - \beta_n)\lambda_n (2\alpha - \lambda_n)\|Ax_n - Az\|^2.
\]
Thus
\[
(1 - \alpha_n - \beta_n)\lambda_n (2\alpha - \lambda_n)\|Ax_n - Az\|^2
\leq \alpha_n k^2 \|x_n - z\|^2 + \alpha_n \|f(z) - z\|^2
+ \|x_n - z\|^2 - \|x_{n+1} - z\|^2
\leq \alpha_n k^2 \|x_n - z\|^2 + \alpha_n \|f(z) - z\|^2
+ \|x_{n+1} - x_n\| \|\|x_n - z\| + \|x_{n+1} - z\|\|.
\]
This implies, by (3.12) and condition (i), that
\[
\lim_{n \to \infty} \|Ax_n - Az\| = 0.
\] (3.15)
Since \(T_{\lambda_n}\) is a firmly nonexpansive, we obtain
\[
\|z_n - z\|^2 = \|T_{\lambda_n} (x_n - \lambda_n Ax_n) - T_{\lambda_n} (z - \lambda_n Az)\|^2
\leq \langle (x_n - \lambda_n Ax_n) - (z - \lambda_n Az), z_n - z \rangle
= \frac{1}{2} \| (x_n - \lambda_n Ax_n) - (z - \lambda_n Az) \|^2 + \| z_n - z \|^2 - \| (x_n - \lambda_n Ax_n)
- (z - \lambda_n Az) - (z_n - z) \|^2
\leq \frac{1}{2} \|x_n - z\|^2 + \| z_n - z \|^2 - \| (x_n - z_n) - \lambda_n (Ax_n - Az) \|^2
= \frac{1}{2} \|x_n - z\|^2 + \| z_n - z \|^2 - \|x_n - z_n\|^2 + 2\lambda_n \langle x_n - z_n, Ax_n - Az\rangle
- \lambda_n^2 \|Ax_n - Az\|^2.
\]
It follows that
\[
\|z_n - z\|^2 \leq \|x_n - z\|^2 - \|x_n - z_n\|^2 + 2\lambda_n \|x_n - z_n\| \|Ax_n - Az\| \] (3.16)
Since
\[
\|x_{n+1} - z\|^2 \leq \alpha_n k^2 \|x_n - z\|^2 + \alpha_n \|f(z) - z\|^2 + \beta_n \|x_n - z\|^2
+ (1 - \alpha_n - \beta_n) \|z_n - z\|^2
\]
and by (3.16), we obtain
\[
\|x_{n+1} - z\|^2 \leq \alpha_n k^2 \|x_n - z\|^2 + \alpha_n \|f(z) - z\|^2 + \beta_n \|x_n - z\|^2
\]
\[
+ (1 - \alpha_n - \beta_n)(\|x_n - z\|^2 - \|x_n - z_n\|^2 + 2\lambda_n \|x_n - z_n\| \|Ax_n - Az\|)
\]
\[
\leq \alpha_n k^2 \|x_n - z\|^2 + \alpha_n \|f(z) - z\|^2 + \|x_n - z\|^2 - (1 - \beta_n) \|x_n - z_n\|^2
\]
\[
+ \alpha_n \|x_n - z_n\|^2 + 2\lambda_n \|x_n - z_n\| \|Ax_n - Az\|
\]
\[
= \alpha_n (k^2 \|x_n - z\|^2 + \|f(z) - z\|^2 + \|x_n - z_n\|^2) + \|x_n - z\|^2
\]
\[
- (1 - \beta_n) \|x_n - z_n\|^2 + 2\lambda_n \|x_n - z_n\| \|Ax_n - Az\|
\]
This implies
\[
(1 - \beta_n) \|x_n - z_n\|^2 \leq \|x_n - z\|^2 - \|x_{n+1} - z\|^2 + \alpha_n (k^2 \|x_n - z\|^2
\]
\[
+ \|f(z) - z\|^2 + \|x_n - z_n\|^2) + 2\lambda_n \|x_n - z_n\| \|Ax_n - Az\|
\]
and by condition (i), we obtain
\[
(1 - d) \|x_n - z_n\|^2 \leq \|x_{n+1} - x_n\| (\|x_n - z\| + \|x_{n+1} - z\|) + \alpha_n (k^2 \|x_n - z\|^2
\]
\[
+ \|f(z) - z\|^2 + \|x_n - z_n\|^2) + 2\lambda_n \|x_n - z_n\| \|Ax_n - Az\|
\]
Thus
\[
\lim_{n \to \infty} \|x_n - z_n\| = 0. \tag{3.17}
\]
From (3.13) and (3.17), we obtain
\[
\|S_n z_n - z_n\| = \|S_n z_n - x_n + x_n - z_n\|
\]
\[
\leq \|S_n z_n - x_n\| + \|x_n - z_n\| \to 0 \text{ as } n \to \infty. \tag{3.18}
\]
We shall show that
\[
\limsup_{n \to \infty} (f(z_0) - z_0, z_n - z_0) \leq 0,
\]
where \(z_0 = P_{\bigcap_{i=1}^N F(T_i) \cap EP(f)}(z_0)\). To show this inequality, we choose a subsequence \(\{z_{n_k}\}\) of \(\{z_n\}\) such that
\[
\lim_{n \to \infty} (f(z_0) - z_0, z_n - z_0) = \lim_{k \to \infty} (f(z_0) - z_0, z_{n_k} - z_0).
\]
Without loss of generality, we may assume that \(z_{n_k} \to w\) as \(k \to \infty\) where \(w \in C\). We first show \(w \in EP\). Since \(z_n = T_{\lambda_n}(x_n - \lambda_n Ax_n)\), we obtain
\[
F(z_n, y) + \langle Ax_n, y - z_n \rangle + \frac{1}{\lambda_n} \langle y - z_n, z_n - x_n \rangle \geq 0, \quad \forall y \in C.
\]
From (A2), we have
\[
\langle Ax_n, y - z_n \rangle + \frac{1}{\lambda_n} \langle y - z_n, z_n - x_n \rangle \geq F(y, z_n).
\]
Thus
\[\langle Ax_{nk}, y - z_{nk} \rangle + \frac{1}{\lambda_{nk}}(y - z_{nk}, z_{nk} - x_{nk}) \geq F(y, z_{nk}), \quad \forall y \in C. \] (3.19)

Putting \(z_t = ty + (1 - t)w \) for all \(t \in (0, 1] \) and \(y \in C \). Then, we have \(z_t \in C \). So, from (3.19), we obtain
\[
\langle z_t - z_{nk}, A z_t \rangle \geq \langle z_t - z_{nk}, A z_{nk} \rangle - \langle z_t - z_{nk}, \frac{z_{nk} - x_{nk}}{\lambda_{nk}} \rangle + F(z_t, z_{nk})
\]
\[= \langle z_t - z_{nk}, A z_t - A z_{nk} \rangle + \langle z_t - z_{nk}, A z_{nk} - A x_{nk} \rangle \]
\[- \langle z_t - z_{nk}, \frac{z_{nk} - x_{nk}}{\lambda_{nk}} \rangle + F(z_t, z_{nk}). \]

Since \(\| z_{nk} - x_{nk} \| \to 0 \) as \(k \to \infty \), we obtain \(\| A z_{nk} - A x_{nk} \| \to 0 \) as \(k \to \infty \).

Further, from the monotonicity of \(A \), we have \(\langle z_t - z_{nk}, A z_t - A z_{nk} \rangle \geq 0 \). So, from (A4), we obtain
\[\langle z_t - w, A z_t \rangle \geq F(z_t, w). \] (3.20)

From (A1), (A4) and (3.20), we also have
\[0 = F(z_t, z_t) \leq tF(z_t, y) + (1 - t)F(z_t, w) \]
\[\leq tF(z_t, y) + (1 - t)\langle z_t - w, A z_t \rangle \]
\[= tF(z_t, y) + (1 - t)t\langle y - w, A z_t \rangle \]
and hence
\[0 \leq F(z_t, y) + (1 - t)\langle y - w, A z_t \rangle \]

Letting \(t \to 0 \), we obtain
\[0 \leq F(w, y) + \langle y - w, A w \rangle, \quad \forall y \in C. \]

Therefore \(w \in EP \). Next, we show that \(w \in \cap_{i=1}^N F(T_i) \). We assume that
\[\alpha_{1k} \to \alpha_1^1, \quad \alpha_{1n}^k \to \alpha_1^N \in (0, 1] \] as \(k \to \infty \)

for \(j = 1, 2, \ldots, N - 1 \) and \(\alpha_{nk}^j \to \alpha_3^j \in [0, 1) \) as \(k \to \infty \) for \(j = 1, 2, \ldots, N \).

Let \(S_n \) be the \(S \)-mappings generated by \(T_1, T_2, \ldots, T_N \) and \(\beta_1, \beta_2, \ldots, \beta_N \), where \(\beta_j = (\alpha_1^j, \alpha_2^j, \alpha_3^j) \) for \(j = 1, 2, \ldots, N \). By Lemma 2.7, we have
\[\lim_{k \to \infty} \| S_{nk} x - S x \| = 0, \quad \forall x \in C. \] (3.21)

By Lemma 2.6, we have \(\cap_{i=1}^N F(T_i) = F(S) \). Assume that \(Sw \neq w \). By using the Opial property and (3.18) and (3.21), we obtain
\[
\lim_{k \to \infty} \| z_{nk} - w \| < \liminf_{k \to \infty} \| z_{nk} - Sw \|
\]
\[\leq \liminf_{k \to \infty} (\| z_{nk} - S_{nk} z_{nk} \| + \| S_{nk} z_{nk} - S_{nk} w \| + \| S_{nk} w - Sw \|)
\]
\[\leq \liminf_{k \to \infty} \| z_{nk} - w \| \]
which is a contradiction. Thus $Sw = w$ and $w \in F(S) = \cap_{i=1}^{N} F(T_i)$. Therefore $w \in \cap_{i=1}^{N} F(T_i) \cap EP$. Since $z_{n_k} \to w$ and $w \in \cap_{i=1}^{N} F(T_i) \cap EP$, we obtain
\[
\limsup_{n \to \infty} (f(z_0) - z_0, z_n - z_0) = \limsup_{k \to \infty} (f(z_0) - z_0, z_{n_k} - z_0)
\]
\[
= \langle f(z_0) - z_0, w - z_0 \rangle \leq 0. \quad (3.22)
\]
From $x_{n+1} - z_0 = \alpha_n(f(x_n) - z_0) + \beta_n(x_n - z_0) + (1 - \alpha_n - \beta_n)(S_n z_n - z_0)$, we obtain
\[
(1 - \alpha_n - \beta_n)^2 \|S_n z_n - z_0\|^2 \geq \|x_{n+1} - z_0\|^2 - 2\alpha_n \langle f(x_n) - z_0, x_{n+1} - z_0 \rangle - \beta_n \|x_n - z_0\|^2.
\]
So we have
\[
\|x_{n+1} - z_0\|^2 \leq (1 - \alpha_n - \beta_n)^2 \|z_n - z_0\|^2 + \beta_n \|x_n - z_0\|^2 \\
+ 2\alpha_n \langle f(x_n) - z_0, x_{n+1} - z_0 \rangle \\
\leq (1 - \alpha_n - \beta_n)^2 \|z_n - z_0\|^2 + \beta_n \|x_n - z_0\|^2 \\
+ 2\alpha_n \langle f(x_n) - f(z_0), x_{n+1} - z_0 \rangle + 2\alpha_n \langle f(z_0) - z_0, x_{n+1} - z_0 \rangle \\
\leq (1 - \alpha_n - \beta_n)^2 \|x_n - z_0\|^2 + \beta_n \|x_n - z_0\|^2 \\
+ 2\alpha_n \|f(x_n) - f(z_0), x_{n+1} - z_0 \rangle + 2\alpha_n \langle f(z_0) - z_0, x_{n+1} - z_0 \rangle \\
\leq \left((1 - \alpha_n - \beta_n)^2 + \beta_n \right) \|x_n - z_0\|^2 + \alpha_n k \|x_n - z_0\|^2 + \|x_{n+1} - z_0\|^2 \\
+ 2\alpha_n \langle f(z_0) - z_0, x_{n+1} - z_0 \rangle.
\]
So
\[
(1 - \alpha_n) \|x_{n+1} - z_0\|^2 \leq \left((1 - \alpha_n - \beta_n)^2 + \beta_n + \alpha_n k \right) \|x_n - z_0\|^2 \\
+ 2\alpha_n \langle f(z_0) - z_0, x_{n+1} - z_0 \rangle.
\]
Thus
\[
\|x_{n+1} - z_0\|^2 \leq \frac{(1 - \alpha_n - \beta_n)^2 + \beta_n + \alpha_n k}{1 - \alpha_n k} \|x_n - z_0\|^2 + \frac{2\alpha_n}{1 - \alpha_n k} \langle f(z_0) - z_0, x_{n+1} - z_0 \rangle \\
\leq 1 - \frac{2\alpha_n + \alpha_n k}{1 - \alpha_n k} \|x_n - z_0\|^2 + \frac{\alpha_n^2}{1 - \alpha_n k} \|x_n - z_0\|^2 \\
+ \frac{2\alpha_n}{1 - \alpha_n k} \langle f(z_0) - z_0, x_{n+1} - z_0 \rangle \\
\leq \left(1 - \frac{2(1 - k)\alpha_n}{1 - \alpha_n k} \right) \|x_n - z_0\|^2 \\
+ \frac{2(1 - k)\alpha_n}{1 - \alpha_n k} \left(\frac{\alpha_n M}{2(1 - k)} + \frac{1}{1 - k} \langle f(z_0) - z_0, x_{n+1} - z_0 \rangle \right),
\]
where $M = \sup \{ \|x_n - z_0\|^2 : n \in \mathbb{N} \}$. Put $\beta_n = \frac{2(1-k)\|x_n\|}{1-\alpha_n k}$. Then $\sum_{n=1}^{\infty} \beta_n = \infty$ and $\lim_{n \to \infty} \beta_n = 0$. Let $\epsilon > 0$. From (3.22), there exists $m \in \mathbb{N}$ such that
\[
\frac{\alpha_n M}{2(1-k)} \leq \frac{\epsilon}{2} \quad \text{and} \quad \frac{1}{1-k} (f(z_0) - z_0, x_{n+1} - z_0) \leq \frac{\epsilon}{2}
\]
for all $n \geq m$. Then
\[
\|x_{n+1} - z_0\|^2 \leq (1-\beta_n)\|x_n - z_0\|^2 + (1 - (1-\beta_n))\epsilon.
\]
Similarly, we have
\[
\|x_{m+n} - z_0\|^2 \leq \prod_{k=m}^{m+n-1} (1-\beta_k)\|x_m - z_0\|^2 + \left(1 - \prod_{k=m}^{m+n-1} (1-\beta_k)\right)\epsilon.
\]
From $\sum_{k=m}^{\infty} \beta_k = \infty$, we have $\prod_{k=m}^{\infty} (1-\beta_k) = 0$. Therefore
\[
\limsup_{n \to \infty} \|x_n - z_0\|^2 = \limsup_{n \to \infty} \|x_{m+n} - z_0\|^2 \leq \epsilon.
\]
Since $\epsilon > 0$ is arbitrary, we obtain
\[
\limsup_{n \to \infty} \|x_n - z_0\|^2 \leq 0.
\]
Thus $\{x_n\}$ converges strongly to $z_0 \in \cap_{i=1}^{N} F(T_i) \cap EP$, where $z_0 = P_{\cap_{i=1}^{N} F(T_i) \cap EP}(0)$. \hfill \square

Using our main theorem (Theorem 3.1), we obtain strong convergence in a Hilbert space.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H and let $F : C \times C \to \mathbb{R}$ be a bifunction satisfying conditions (A1)-(A4). Let $\{T_i\}_{i=1}^{N}$ be a finite family of nonexpansive mappings of C into itself with $\cap_{i=1}^{N} F(T_i) \cap EP \neq \emptyset$. For $j = 1, 2, \ldots, N$, let $\alpha_j^{(n)} = (\alpha_j^{(n)}, \alpha_j^{(n)}, \alpha_j^{(n)})$ be such that $\alpha_j^{(n)}, \alpha_j^{(n)} \in [0, 1], \alpha_j^{(n)} + \alpha_j^{(n)} + \alpha_j^{(n)} = 1, \{\alpha_j^{(n)}\}_{j=1}^{N-1} \subset [\eta_j, \theta_j]$ with $0 < \eta_j < \theta_j < 1$, $\{\alpha_j^{(n)}\}_{j=1}^{N} \subset [\eta_N, 1]$ with $0 < \eta_N \leq 1$ and $\{\alpha_j^{(n)}\}_{j=1}^{N}, \{\alpha_j^{(n)}\}_{j=1}^{N} \subset [0, \theta]$ with $0 \leq \theta < 1$. Let f be a contraction of H into itself and let S_n be the S-mappings generated by T_1, T_2, \ldots, T_N and $\alpha_1^{(n)}, \alpha_2^{(n)}, \ldots, \alpha_N^{(n)}$. Let $x_1 \in C$ and $\{z_n\}, \{x_n\} \subset C$ be sequences generated by
\[
\begin{cases}
F(z_n, y) + \frac{1}{\lambda_n} (y - z_n, z_n - x_n) \geq 0, \quad \forall y \in C, \\
x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + (1 - \alpha_n - \beta_n) S_n z_n, \quad \forall n \in \mathbb{N},
\end{cases}
\]
where $\{\alpha_n\}, \{\beta_n\} \subset [0, 1]$ and $\{\lambda_n\} \subset (0, \infty)$ satisfy the following conditions:
(i) $0 < a \leq \lambda_n \leq b < \infty$, $0 < c \leq \beta_n \leq d < 1$;
(ii) $\lim_{n \to \infty} \alpha_n = 0, \sum_{n=1}^{\infty} \alpha_n = \infty$, and $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$;
(iii) $\lim_{n \to \infty} \frac{\lambda_n}{\lambda_{n+1}} = 1$;
(iv) $|\alpha_j^{n+1} - \alpha_j^{n}| \to 0$ and $|\alpha_j^{n+1} - \alpha_j^{n}| \to 0$ as $n \to \infty$, for all $j \in \{1, 2, 3, \ldots, N\}$. Then $\{x_n\}$ converges strongly to $z \in \cap_{i=1}^{N} F(T_i) \cap EP(F)$, where $z = P_{\cap_{i=1}^{N} F(T_i) \cap EP(F)}(z)$.

Thai J. Math. 8 (3) (2010)/ U. Inprasit
Proof. In Theorem 3.1, put $A \equiv 0$. Then, for all $\alpha \in (0, \infty)$, we have
$$\langle x - y, Ax - Ay \rangle \geq \alpha \|Ax - Ay\|^2$$
for all $x, y \in C$. So, taking $a, b \in (0, \infty)$ with $0 < a \leq b < \infty$ and choosing a sequence $\{\lambda_n\}$ of real numbers with $a \leq \lambda_n \leq b$, we obtain the result from Theorem 3.1. \hfill \Box

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H and let A be an α-inverse strongly monotone mapping of C into H and let $\{T_i\}_{i=1}^N$ be a finite family of nonexpansive mappings of C into itself with $\cap_{i=1}^N F(T_i) \cap VI(C, A) \neq \emptyset$. For $j = 1, 2, \ldots, N$, let $\alpha_j^{(n)} = (\alpha_1^{n,j}, \alpha_2^{n,j}, \alpha_3^{n,j})$ be such that $\alpha_1^{n,j}, \alpha_2^{n,j}, \alpha_3^{n,j} \in [0, 1]$, $\alpha_1^{n,j} + \alpha_2^{n,j} + \alpha_3^{n,j} = 1$, $\{\alpha_j^{n,j}\}_{j=1}^{N-1} \subseteq [\eta_1, \theta_1]$ with $0 < \eta_1 \leq \theta_1 < 1$, $\{\alpha_1^{N,j}\} \subseteq [\eta_N, 1]$ with $0 < \eta_N \leq 1$ and $\{\alpha_2^{N,j}\}_{j=1}^{N-1}, \{\alpha_3^{N,j}\}_{j=1}^{N-1} \subseteq [0, \theta_3]$ with $0 \leq \theta_3 < 1$. Let f be a contraction of H into itself and let S_n be the S-mappings generated by T_1, T_2, \ldots, T_N and $\alpha_1^{(n)}, \alpha_2^{(n)}, \ldots, \alpha_N^{(n)}$. Let $x_1 \in C$ and $\{x_n\} \subseteq C$ be sequences generated by
$$x_{n+1} = \alpha_n f(x_n) + \beta_n x_n + (1 - \alpha_n - \beta_n)S_n(PC(x_n - \lambda_n Ax_n)), \quad \forall n \in \mathbb{N},$$
where $\{\alpha_n\}, \{\beta_n\} \subseteq [0, 1]$ and $\{\lambda_n\} \subseteq [0, 2\alpha]$ satisfy the following conditions:
(i) $0 < a \leq \lambda_n \leq b < 2\alpha$, $0 < c \leq \beta_n \leq d < 1$;
(ii) $\lim_{n \to \infty} \alpha_n = 0$, $\sum_{n=1}^{\infty} \alpha_n = \infty$, and $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$;
(iii) $\lim_{n \to \infty} \lambda_n = \infty$;
(iv) $|\alpha_1^{n+1,j} - \alpha_1^{n,j}| \to 0$ and $|\alpha_2^{n+1,j} - \alpha_2^{n,j}| \to 0$ as $n \to \infty$, for all $j \in \{1, 2, 3, \ldots, N\}$. Then $\{x_n\}$ converges strongly to $z \in \cap_{i=1}^N F(T_i) \cap VI(C, A)$, where
$$z = P_{\cap_{i=1}^N F(T_i) \cap VI(C, A)} f(z).$$

Proof. In Theorem 3.1, put $F \equiv 0$. Then, we obtain
$$\langle Ax_n, y - z_n \rangle + \frac{1}{\lambda_n} \langle y - z_n, z_n - x_n \rangle \geq 0, \quad \forall y \in C, \forall n \in \mathbb{N}.$$
This implies that
$$\langle y - z_n, x_n - \lambda_n Ax_n - z_n \rangle \leq 0, \quad \forall y \in C.$$
So, we obtain $PC(x - \lambda_n Ax_n) = z_n$ for all $n \in \mathbb{N}$. Then, we obtain the result from Theorem 3.1. \hfill \Box

A mapping $G : C \to C$ is called strictly pseudocontractive if there exists g with $0 \leq g < 1$ such that
$$\|Gx - Gy\|^2 \leq \|x - y\|^2 + g\|(I - G)x - (I - G)y\|^2, \quad \forall x, y \in C.$$
Such a mapping G is called strictly g-pseudocontractive. Putting $A = I - G$, we know that
$$\langle x - y, Ax - Ay \rangle \geq \frac{1-g}{2} \|Ax - Ay\|^2, \quad \forall x, y \in C;$$
see [8]. So, we have the following corollary.
Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H and let $F : C \times C \to \mathbb{R}$ be a bifunction satisfying conditions (A1)-(A4). Let G be a strictly g-pseudocontractive mapping of C into itself and let $\{T_n\}_{n=1}^N$ be a finite family of nonexpansive mappings of C into itself with $\cap_{n=1}^N F(T_n) \cap EP \neq \emptyset$, where $A = I - G$. For $j = 1, 2, \ldots, N$, let $\alpha_j^{(n)} = (\alpha_1^{n,j}, \alpha_2^{n,j}, \alpha_3^{n,j})$ be such that $\alpha_1^{n,j}, \alpha_2^{n,j}, \alpha_3^{n,j} \in [0, 1]$, $\alpha_1^{n,j} + \alpha_2^{n,j} + \alpha_3^{n,j} = 1$, $\{\alpha_1^{n,j}\}_{j=1}^N \subset [\eta_1, \theta_1]$ with $0 < \eta_1 \leq \theta_1 < 1$, $\{\alpha_1^{n,\infty}\} \subset [\eta_N, 1]$ with $0 < \eta_N \leq 1$ and $\{\alpha_2^{n,j}\}_{j=1}^N \subset [0, \theta_3]$ with $0 \leq \theta_3 < 1$. Let f be a contraction of H into itself and let S_n be the S-mappings generated by T_1, T_2, \ldots, T_N and $\alpha_1^{(n)}, \alpha_2^{(n)}, \ldots, \alpha_N^{(n)}$. Let $x_1 \in C$ and $\{x_n\}, \{x\} \subset C$ be sequences generated by

$$\begin{align*}
F(z_n, y) + (I - G)x_n, y - z_n) + \frac{1}{\lambda_n}(y - z_n, z_n - x_n) & \geq 0, \quad \forall y \in C, \\
\eta_n - n + 1 \alpha_n f(x_n) + \beta_n x_n + (1 - \alpha_n - \beta_n) S_n x_n, \quad \forall n \in \mathbb{N},
\end{align*}$$

where $\{\alpha_n\}, \{\beta_n\} \subset [0, 1]$ and $\{\lambda_n\} \subset [0, 1 - g]$ satisfy the following conditions:

(i) $0 < a \leq \lambda_n \leq b < 1 - g$, $0 < c \leq \beta_n \leq d < 1$;

(ii) $\lim_{n \to \infty} \alpha_n = 0, \sum_{n=1}^\infty \alpha_n = \infty$, and $\sum_{n=1}^\infty |\alpha_{n+1} - \alpha_n| < \infty$;

(iii) $\lim_{n \to \infty} \frac{\lambda_{n+1}}{\lambda_n} = 1$;

(iv) $|\alpha_1^{n+1,j} - \alpha_1^{n,j}| \to 0$ and $|\alpha_3^{n+1,j} - \alpha_3^{n,j}| \to 0$ as $n \to \infty$, for all $j \in \{1, 2, 3, \ldots, N\}$.

Then $\{x_n\}$ converges strongly to $z \in \cap_{n=1}^N F(T_n) \cap EP$, where $z = P_{\cap_{n=1}^N F(T_n) \cap EP} f(z)$.

Proof. A strictly g-pseudocontractive mapping is $\frac{1-\theta}{2}$-inverse-strongly monotone. So, from Theorem 3.1, we obtain the desired result. \hfill \Box

Acknowledgements : The authors would like to thank the referee and the editor for their comments and helpful suggestions. The research is supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand.

References

Viscosity Approximation Methods for Generalized Equilibrium Problems ... 625

(Received 15 September 2010)

Utith Inprasit
Department of Mathematics, Statistics and Computer,
Faculty of Science,
Ubon Ratchathani University,
Ubon Ratchathani 34190, THAILAND, and
Centre of Excellence in Mathematics,
CHE, Si Ayutthaya Rd.,
Bangkok 10400, THAILAND
e-mail: scutitin@ubu.ac.th