Common Endpoints for Non-Commutative Suzuki Mappings

Thanomsak Laokul† and Bancha Panyanak‡

†PhD’s Degree Program in Mathematics, Department of Mathematics
Faculty of Science, Chiang Mai University
Chiang Mai 50200, Thailand
e-mail: thanomsak_1@cmu.ac.th

‡Research Center in Mathematics and Applied Mathematics
Department of Mathematics, Faculty of Science, Chiang Mai University
Chiang Mai 50200, Thailand
e-mail: bancha.p@cmu.ac.th

Abstract: In this paper, we prove an endpoint theorem for multi-valued Suzuki mappings in uniformly convex hyperbolic spaces. As a consequence, we obtain a common endpoint theorem for a pair of single-valued and multi-valued Suzuki mappings without the commutative condition. Our results extend and improve the results of Espinola et al. (2015), Saejung (2016), Kudtha and Panyanak (2018) and many others.

Keywords: endpoint; fixed point; Suzuki mapping; uniformly convex hyperbolic space.

2010 Mathematics Subject Classification: 47H09; 47H10.

1 Introduction

Let \((X,d,W)\) be a hyperbolic space. The distance from a point \(x\) in \(X\) to a nonempty subset \(E\) of \(X\) is defined by

\[\text{dist}(x,E) := \inf\{d(x,y) : y \in E\}. \]
We denote by \(\mathcal{K}(E) \) the family of nonempty compact subsets of \(E \) and by \(\mathcal{KC}(E) \) the family of nonempty compact convex subsets of \(E \). The Pompeiu-Hausdorff distance on \(\mathcal{K}(E) \) is defined by
\[
H(A, B) := \max \left\{ \sup_{a \in A} \text{dist}(a, B), \sup_{b \in B} \text{dist}(b, A) \right\}
\]
for all \(A, B \in \mathcal{K}(E) \).

A multi-valued mapping \(T : E \to \mathcal{K}(E) \) is said to be nonexpansive \([1]\) if
\[
H(T(x), T(y)) \leq d(x, y) \quad (1.1)
\]
for all \(x, y \in E \). If (1.1) is valid for all \(x, y \in E \) with \(\frac{1}{2} \text{dist}(x, T(x)) \leq d(x, y) \), then \(T \) is called a Suzuki mapping \([2]\). It is known that every nonexpansive mapping is a Suzuki mapping and, in general, the converse is not true. An element \(x \) in \(E \) is called a fixed point of \(T \) if \(x \in T(x) \). Moreover, if \(\{x\} = T(x) \), then \(x \) is called an endpoint of \(T \). We denote by \(\text{Fix}(T) \) the set of all fixed points of \(T \) and by \(\text{End}(T) \) the set of all endpoints of \(T \). It is clear that \(\text{End}(T) \subseteq \text{Fix}(T) \) for every multi-valued mapping \(T \) and \(\text{End}(t) = \text{Fix}(t) \) for every single-valued mapping \(t \).

Endpoint theory for multi-valued mappings has many useful applications in applied sciences, for instance, in game theory and optimization theory. In particular, in 1986, Corley \([3]\) proved that a maximization with respect to a cone is equivalent to the problem of finding an endpoint of a certain multi-valued mapping.

Let \(E \) be a nonempty subset of a metric space \((X, d)\) and \(x \in X \). The radius of \(E \) relative to \(x \) is defined by
\[
r_x(E) := \sup \{d(x, y) : y \in E\}.
\]
The diameter of \(E \) is defined by
\[
\text{diam}(E) := \sup \{d(x, y) : x, y \in E\}.
\]
A single-valued mapping \(t : E \to E \) and a multi-valued mapping \(T : E \to \mathcal{K}(E) \) are said to be commuting mappings \([4]\) if for \(x, y \in E \) such that \(x \in T(y) \), one has \(t(x) \in T(t(y)) \). A sequence \(\{x_n\} \) in \(E \) is called an approximate endpoint sequence for \(T \) \([5]\) if \(\lim_{n \to \infty} r_{x_n}(T(x_n)) = 0 \).

The existence of endpoints for nonexpansive mappings was first studied by Panyanak \([6]\) in 2015. He showed that a multi-valued nonexpansive mapping on a bounded closed convex subset \(E \) of a uniformly convex Banach space \(X \) has an endpoint if and only if it has an approximate endpoint sequence in \(E \). It was quickly noted by Espinola et al. \([7]\) that Panyanak’s result can be extended to the general setting of Banach spaces with the Dominguez-Lorenzo condition. Since then the endpoint results for some generalized nonexpansive mappings have been rapidly developed and many papers have appeared (see, e.g., [8-12]). Among other things, Kudtha and Panyanak \([11]\) obtained the following result.

Theorem 1.1. Let \(X \) be a uniformly convex hyperbolic space with monotone modulus of uniform convexity and let \(E \) be a nonempty bounded closed convex subset...
of X. Let $t : E \to E$ be a single-valued Suzuki mapping and $T : E \to \mathcal{KC}(E)$ be a multi-valued Suzuki mapping. Suppose that the following conditions hold:

(i) t and T are commuting mappings;
(ii) T has an approximate endpoint sequence in $\text{End}(t)$.

Then t and T have a common endpoint in E.

In [11], the authors also showed that the condition (ii) is necessary for Theorem 1.1. In general, two mappings need not be commute, thus the following question should be of interest.

Question: Is Theorem 1.1 true if the condition (i) is eliminated?

In this paper, we show that the answer is “Yes”. To support our result, we also show that there exists a non-commutative pair of single-valued and multi-valued Suzuki mappings which have a common endpoint.

2 Preliminaries

Throughout this paper, \mathbb{N} stands for the set of natural numbers and \mathbb{R} stands for the set of real numbers.

Definition 2.1. [13] A hyperbolic space is a triple (X, d, W) where (X, d) is a metric space and $W : X \times X \times [0, 1] \to X$ is a function such that for all $x, y, z, w \in X$ and $\alpha, \beta \in [0, 1]$, we have

(W1) $d(z, W(x, y, \alpha)) \leq (1 - \alpha)d(z, x) + \alpha d(z, y)$;
(W2) $d(W(x, y, \alpha), W(x, y, \beta)) = |\alpha - \beta|d(x, y)$;
(W3) $W(x, y, \alpha) = W(y, x, 1 - \alpha)$;
(W4) $d(W(x, z, \alpha), W(y, w, \alpha)) \leq (1 - \alpha)d(x, y) + \alpha d(z, w)$.

If $x, y \in X$ and $\alpha \in [0, 1]$, then we use the notation $(1 - \alpha)x \oplus \alpha y$ for $W(x, y, \alpha)$. It is easy to see that for any $x, y \in X$ and $\alpha \in [0, 1]$, one has

$$d(x, (1 - \alpha)x \oplus \alpha y) = \alpha d(x, y) \quad \text{and} \quad d(y, (1 - \alpha)x \oplus \alpha y) = (1 - \alpha)d(x, y).$$

Let $[x, y] := \{ (1 - \alpha)x \oplus \alpha y : \alpha \in [0, 1] \}$. A nonempty subset E of X is said to be convex if $[x, y] \subseteq E$ for all $x, y \in E$.

Definition 2.2. [13] The hyperbolic space (X, d, W) is called uniformly convex if for any $r > 0$ and $\varepsilon \in (0, 2]$ there exists $\delta \in (0, 1]$ such that for all $a, x, y \in X$ with $d(x, a) \leq r$, $d(y, a) \leq r$ and $d(x, y) \geq r\varepsilon$, we have

$$d \left(\frac{1}{2}x \oplus \frac{1}{2}y, a \right) \leq (1 - \delta)r.$$

A function $\eta : (0, \infty) \times (0, 2] \to (0, 1]$ providing such a $\delta := \eta(r, \varepsilon)$ for given $r > 0$ and $\varepsilon \in (0, 2]$ is called a modulus of uniform convexity. The mapping δ is monotone if for every fixed ε it decreases with respect to r.
Obviously, uniformly convex Banach spaces are uniformly convex hyperbolic
spaces. CAT(0) spaces are also uniformly convex hyperbolic spaces, see [13, Proposition 8].

Definition 2.3. [14] Let E be a nonempty subset of a metric space (X, d). A
multivalued mapping $T : E \to CB(E)$ is said to satisfy condition (E_μ) if there
exists $\mu \geq 1$ such that for each $x, y \in E$, we have
\[
\text{dist}(x, T(y)) \leq \mu \text{dist}(x, T(x)) + d(x, y).
\]
The mapping T is said to be quasi-nonexpansive if for each $x \in E$ and $y \in \text{Fix}(T)$, one has
\[
H(T(x), T(y)) \leq d(x, y).
\]

Let E be a nonempty subset of a metric space (X, d) and $\{x_n\}$ be a bounded
sequence in X. The asymptotic radius of $\{x_n\}$ relative to E is defined by
\[
r(E, \{x_n\}) = \inf \left\{ \limsup_{n \to \infty} d(x_n, x) : x \in E \right\}.
\]
The asymptotic center of $\{x_n\}$ relative to E is defined by
\[
A(E, \{x_n\}) = \left\{ x \in E : \lim_{n \to \infty} d(x_n, x) = r(E, \{x_n\}) \right\}.
\]
The sequence $\{x_n\}$ is called regular relative to E if $r(E, \{x_n\}) = r(E, \{x_n\})$
for every subsequence $\{x_{n_k}\}$ of $\{x_n\}$. It is known that every bounded sequence in
a metric space has a regular subsequence (see [15]; also [16, p. 3690]).

Before proving our main results we collect some basic facts about uniformly
convex hyperbolic spaces. From now on, X stands for a complete uniformly convex
hyperbolic space with monotone modulus of uniform convexity.

Lemma 2.4. The following statements hold:

(i) [2 Proposition 2] if E is a nonempty subset of X and $t : E \to E$ is a single-
valued Suzuki mapping with $\text{End}(t) \neq \emptyset$, then t is a quasi-nonexpansive mapping;

(ii) [17] Lemma 3.2 if E is a nonempty closed convex subset of X and $T : E \to K(E)$ is a multi-valued Suzuki mapping, then T satisfies condition (E_3);

(iii) [6] Proposition 2.4 Let E be a nonempty subset of X, $\{x_n\}$ be a sequence in E, and $T : E \to K(E)$ be a multi-valued mapping. Then $r_{x_n}(T(x_n)) \to 0$ if and
only if $\text{dist}(x_n, T(x_n)) \to 0$ and $\text{diam}(T(x_n)) \to 0$.

(iv) [13] Proposition 3.3 if E is a nonempty closed convex subset of X and $\{x_n\}$ be a bounded sequence in E, then $A(E, \{x_n\})$ consists of exactly one point.
3 Main Results

This section is begun by proving an endpoint theorem for multi-valued Suzuki mappings. The proof closely follows the proof of Theorem 3.1 in [11], for the convenience of readers we include the details.

Theorem 3.1. Let \(E \) be a nonempty closed convex subset of \(X \) and \(T : E \to \mathcal{K}(E) \) be a multi-valued Suzuki mapping. Let \(\{x_n\} \) be a sequence in \(E \) which is regular relative to \(E \). Suppose that \(\{x_n\} \) is an approximate endpoint sequence for \(T \) and \(A(E, \{x_n\}) = \{x\} \). Then \(x \) is an endpoint of \(T \).

Proof. Let \(r = r(E, \{x_n\}) \). For \(n \in \mathbb{N} \), we let \(y_n \in T(x_n) \) be such that \(d(x_n, y_n) = \text{dist}(x_n, T(x_n)) \). Since \(\{x_n\} \) is an approximate endpoint sequence for \(T \), by Lemma 2.4 (iii) we have

\[
\text{dist}(x_n, T(x_n)) \to 0 \quad \text{and} \quad \text{diam}(T(x_n)) \to 0. \tag{3.1}
\]

Case 1. For each \(n \in \mathbb{N} \) there exists \(m \in \mathbb{N} \) such that \(m \geq n \) and \(\frac{1}{2}d(x_m, y_m) > d(x_m, x) \). Then there is a subsequence \(\{x_{n_k}\} \) of \(\{x_n\} \) such that

\[
\frac{1}{2}d(x_{n_k}, y_{n_k}) > d(x_{n_k}, x) \quad \text{for all} \quad k \in \mathbb{N}. \tag{3.2}
\]

It follows from (3.1) and (3.2) that \(\lim_{k \to \infty} x_{n_k} = x \). By Lemma 2.4 (ii), we have

\[
\text{dist}(x, T(x)) \leq d(x, x_{n_k}) + \text{dist}(x_{n_k}, T(x)) \leq 2d(x, x_{n_k}) + 3\text{dist}(x_{n_k}, T(x_{n_k})) \to 0 \quad \text{as} \quad k \to \infty.
\]

Hence \(x \in T(x) \). Notice also that \(\frac{1}{2}\text{dist}(x, T(x)) = 0 \leq d(x_{n_k}, x) \) for all \(k \in \mathbb{N} \). Since \(T \) is a Suzuki mapping, we have

\[
H(T(x_{n_k}), T(x)) \leq d(x_{n_k}, x) \to 0 \quad \text{as} \quad k \to \infty. \tag{3.3}
\]

Let \(v \in T(x) \) and choose \(u_{n_k} \in T(x_{n_k}) \) so that \(d(v, u_{n_k}) = \text{dist}(v, T(x_{n_k})) \). From (3.1) and (3.3) we have

\[
d(x, v) \leq d(x, x_{n_k}) + d(x_{n_k}, y_{n_k}) + d(y_{n_k}, u_{n_k}) + d(u_{n_k}, v) \leq d(x, x_{n_k}) + \text{dist}(x_{n_k}, T(x_{n_k})) + \text{diam}(T(x_{n_k})) + H(T(x_{n_k}), T(x)) \to 0 \quad \text{as} \quad k \to \infty.
\]

Hence \(v = x \) for all \(v \in T(x) \). Therefore \(x \in \text{End}(T) \).

Case 2. There exists \(n_0 \in \mathbb{N} \) such that \(\frac{1}{2}d(x_n, y_n) \leq d(x_n, x) \) for all \(n \geq n_0 \). This implies that \(\frac{1}{2}\text{dist}(x_n, T(x_n)) \leq d(x_n, x) \) and so \(H(T(x_n), T(x)) \leq d(x_n, x) \). For \(n \in \mathbb{N} \), select \(z_n \in T(x) \) so that \(d(y_n, z_n) = \text{dist}(y_n, T(x)) \). Since \(T(x) \) is compact, there exists a subsequence \(\{z_{n_j}\} \) of \(\{z_n\} \) such that \(z_{n_j} \to w \in T(x) \). For \(j \) sufficiently large, we have

\[
d(x_{n_j}, w) \leq d(x_{n_j}, y_{n_j}) + d(y_{n_j}, z_{n_j}) + d(z_{n_j}, w) \leq d(x_{n_j}, y_{n_j}) + H(T(x_{n_j}), T(x)) + d(z_{n_j}, w) \leq \text{dist}(x_{n_j}, T(x_{n_j})) + d(x_{n_j}, x) + d(z_{n_j}, w).
\]
This implies by the regularity of \(\{x_n\} \) that \(\limsup_{j \to \infty} d(x_{n_j}, w) \leq \limsup_{j \to \infty} d(x_{n_j}, x) = r \). Hence \(w \in A(E, \{x_{n_j}\}) = \{x\} \). Therefore \(x = w \in T(x) \). Let \(v \in T(x) \) and choose \(u_{n_j} \in T(x_{n_j}) \) so that \(d(v, u_{n_j}) = \text{dist}(v, T(x_{n_j})) \). Thus
\[
\begin{align*}
d(x_{n_j}, v) & \leq d(x_{n_j}, y_{n_j}) + d(y_{n_j}, u_{n_j}) + d(u_{n_j}, v) \\
& \leq d(x_{n_j}, y_{n_j}) + \text{diam}(T(x_{n_j})) + H(T(x), T(x_{n_j})) \\
& \leq \text{dist}(x_{n_j}, T(x_{n_j})) + \text{diam}(T(x_{n_j})) + d(x_{n_j}, x).
\end{align*}
\]

It follows from (3.1) that \(\limsup_{j \to \infty} d(x_{n_j}, v) \leq \limsup_{j \to \infty} d(x_{n_j}, x) = r \). Hence \(v \in A(E, \{x_{n_j}\}) = \{x\} \), and so \(v = x \) for all \(v \in T(x) \). Therefore \(x \in \text{End}(T) \). \(\square \)

Now, we are ready to prove our main theorem. In contrast to Theorem 1.1, it does not need the convexity of \(T(x) \).

Theorem 3.2. Let \(E \) be a nonempty bounded closed convex subset of \(X \), \(t : E \to E \) be a single-valued mapping and \(T : E \to \mathcal{K}(E) \) be a multi-valued mapping. Suppose that \(t \) and \(T \) are Suzuki mappings such that \(T \) has an approximate endpoint sequence in \(\text{End}(t) \). Then \(t \) and \(T \) have a common endpoint in \(E \).

Proof. Let \(\{x_n\} \) be an approximate endpoint sequence for \(T \) in \(\text{End}(t) \). By passing to a subsequence, we may assume that \(\{x_n\} \) is regular relative to \(E \). Let \(A(E, \{x_n\}) = \{x\} \). By Theorem 3.1 \(x \in \text{End}(T) \). It follows from Lemma 2.4 (i) that
\[
\limsup_{n \to \infty} d(x_n, t(x)) \leq \limsup_{n \to \infty} d(x_n, x).
\]
This implies \(t(x) \in A(E, \{x_n\}) = \{x\} \), and hence \(x \in \text{End}(t) \). Therefore \(x \) is a common endpoint of \(t \) and \(T \). \(\square \)

The following example shows that there exists a non-commutative pair of single-valued and multi-valued Suzuki mappings which have a common endpoint.

Example 3.3. Let \(X = \mathbb{R} \), \(E = [0, 3] \) and \(t : E \to E \) be defined by
\[
t(x) = \begin{cases}
0 & \text{if } x \neq 3, \\
1 & \text{if } x = 3.
\end{cases}
\]
Then \(t \) is a single-valued Suzuki mapping (see [2]). Let \(T : E \to \mathcal{K}(E) \) be defined by
\[
T(x) = \left[\frac{x}{2}, x \right] \quad \text{for all } x \in E.
\]
Then \(H(T(x), T(y)) = |x - y| \) for all \(x, y \in E \). Therefore \(T \) is nonexpansive and hence it is a Suzuki mapping. If \(x = 3/2 \) and \(y = 3 \), then \(x \in T(y) \) but \(t(x) = 0 \notin [\frac{3}{2}, 1] = T(t(y)) \). Therefore \(t \) and \(T \) are not commuting, hence we cannot apply Theorem 1.1. However, by Theorem 3.2 we can conclude that \(t \) and \(T \) have a common endpoint in \(E \).
Acknowledgement: This research was supported by Chiang Mai University.

References

(Received 7 February 2019)
(Accepted 20 March 2019)