Fine Spectrum of the Generalized Difference Operator Δ_{uv} on the Sequence Space c_0

Parmeshwary Dayal Srivastava and Sudhanshu Kumar

Department of Mathematics, Indian Institute of Technology, Kharagpur
Kharagpur - 721302, India

Abstract: The purpose of this paper is to determine spectrum and fine spectrum of the operator Δ_{uv} on the sequence space c_0. The operator Δ_{uv} on sequence space c_0 is defined as $\Delta_{uv}x = (u_n x_n + v_{n-1} x_{n-1})_{n=0}^\infty$ satisfying certain conditions, where $x_{-1} = 0$ and $x = (x_n) \in c_0$. In this paper we have obtained the results on the spectrum and point spectrum for the operator Δ_{uv} on the sequence space c_0. Further, the results on continuous spectrum, residual spectrum and fine spectrum of the operator Δ_{uv} on sequence space c_0 are also derived.

Keywords: spectrum of an operator; generalized difference operator; sequence space.

2010 Mathematics Subject Classification: 41A17; 47H09.

1 Introduction

Let $u = (u_k)$ and $v = (v_k)$ be sequences such that

(i) u is either a constant sequence or sequence of distinct real numbers with $U = \lim_{k \to \infty} u_k$,

(ii) v is a sequence of nonzero real numbers with $V = \lim_{k \to \infty} v_k \neq 0$, and

(iii) $|U - u_k| < |V|$ for each $k \in \mathbb{N}_0 = \{0, 1, 2, \cdots\}$.

We define the operator Δ_{uv} on the sequence space c_0 as follows:

$$\Delta_{uv}x = (u_n x_n + v_{n-1} x_{n-1})_{n=0}^\infty$$

with $x_{-1} = 0$, where $x = (x_n) \in c_0$. (1.1)
It is easy to verify that the operator Δ_{uv} can be represented by the matrix

$$\Delta_{uv} = \begin{pmatrix}
u_0 & 0 & 0 & \cdots \\
v_0 & u_1 & 0 & \cdots \\
0 & v_1 & u_2 & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{pmatrix}. \quad (1.2)$$

The spectrum of the Cesaro operator on the sequence space c_0 is investigated by Reade [1], Akhmedov and Basar [2]. Spectrum of the Cesaro operator on sequence spaces bv_0 and bv_1 is obtained by Okutoyi [3] and Okutoyi [4], respectively. Furthermore, Coskun [5] studied the spectrum and fine spectrum for p-Cesaro operator acting on the space c_0. Yildirim [6] and [7] examined fine spectrum of the Rhaly operator on sequence spaces c_0 and c_1. The spectrum and fine spectrum of the difference operator Δ over the sequence spaces c_0 and c_1 is determined by Altay and Basar [8], where $\Delta x = (x_n - x_{n-1})$. The fine spectrum of the Zweier matrix Z_s on sequence spaces l_1 and bv_0 is obtained by Altay and Karakuş [9], where s is a real number with $s \neq 0, 1$ and $Z_s x = (sx_n + (1 - s)x_{n-1})$. Altay and Basar [10] determined fine spectrum of the operator $B(r, s)$ over sequence spaces c_0 and c_1, where $B(r, s) x = (rx_n + sx_{n-1})$. Recently, spectrum and fine spectrum of the operator $B(r, s, t)$ on sequence spaces c_0 and c_1 is studied by Furkan, Bilgic and Altay [11], where $B(r, s, t) x = (rx_n + sx_{n-1} + tx_{n-2})$.

In this paper we determine spectrum, point spectrum, continuous spectrum and residual spectrum of the operator Δ_{uv} on the sequence space c_0. It is easy to verify that by choosing suitably u and v sequences, one can get easily the operators such as $B(r, s)$, Z_s etc. Choosing $u = (r), v = (s)$ and $u = (s), v = (1 - s)$, then the operator Δ_{uv} reduces to $B(r, s)$ and Z_s, respectively. Similarly, if $u = (1), v = (-1)$ and $u = (0), v = (1)$, then the operator Δ_{uv} reduces to Δ and right-shift operator, respectively. Thus, the results of this paper generalizes the corresponding results of many operator whose matrix representation has diagonal and post-diagonal elements studied by earlier authors.

2 Preliminaries and Notation

Let X and Y be Banach spaces and $T : X \to Y$ be a bounded linear operator. The set of all bounded linear operators on X into itself is denoted by $B(X)$. The adjoint $T^* : X^* \to X^*$ of T is defined by

$$(T^* \phi)(x) = \phi(T x) \text{ for all } \phi \in X^* \text{ and } x \in X.$$

Clearly, T^* is a bounded linear operator on the dual space X^*.

Let $X \neq \{0\}$ be a complex normed space and $T : D(T) \to X$ be a linear operator with domain $D(T) \subseteq X$. With T, we associate the operator $T_\alpha = (T - \alpha I)$, where α is a complex number and I is the identity operator on $D(T)$. The inverse of T_α (if exists) is denoted by T_α^{-1} and known as the resolvent operator of T.
Fine Spectrum of the Generalized Difference Operator Δ_{uv} ...

Since the spectral theory is concerned with many properties of T_α and T_α^{-1}, which depend on α, so we are interested the set of those α in the complex plane for which T_α^{-1} exists or T_α^{-1} is bounded or domain of T_α^{-1} is dense in X.

Definition 2.1. ([12], pp. 371) Let $X \neq \{0\}$ be a complex normed space and $T : D(T) \rightarrow X$ be a linear operator with domain $D(T) \subseteq X$. A regular value of T is a complex number α such that

(R1) T_α^{-1} exists,
(R2) T_α^{-1} is bounded,
(R3) T_α^{-1} is defined on a set which is dense in X.

Resolvent set $\rho(T, X)$ of T is the set of all regular values α of T. Its complement $\sigma(T, X) = \mathbb{C} \setminus \rho(T, X)$ in the complex plane \mathbb{C} is called spectrum of T. The spectrum $\sigma(T, X)$ is further partitioned into three disjoint sets namely point spectrum, continuous spectrum and residual continuous as follows:

Point spectrum $\sigma_p(T, X)$ is the set of all $\alpha \in \mathbb{C}$ such that T_α^{-1} does not exist, i.e., condition (R1) fails. The element of $\sigma_p(T, X)$ is called eigenvalue of T.

Continuous spectrum $\sigma_c(T, X)$ is the set of all $\alpha \in \mathbb{C}$ such that conditions (R1) and (R3) hold but condition (R2) fails, i.e., T_α^{-1} exists, domain of T_α^{-1} is dense in X but T_α^{-1} is unbounded.

Residual spectrum $\sigma_r(T, X)$ is the set of all $\alpha \in \mathbb{C}$ such that T_α^{-1} exists but do not satisfy condition (R3), i.e., domain of T_α^{-1} is not dense in X. The condition (R2) may or may not holds good.

Goldberg’s classification of operator T_α ([13], pp. 58): Let X be a Banach space and $T_\alpha \in B(X)$, where α is a complex number. Again, let $R(T_\alpha)$ and T_α^{-1} denote the range and inverse of the operator T_α, respectively. Then the following possibilities may occur;

(A) $R(T_\alpha) = X$,
(B) $R(T_\alpha) \neq \overline{R(T_\alpha)} = X$,
(C) $R(T_\alpha) \neq X$,

and

(1) T_α is injective and T_α^{-1} is continuous,
(2) T_α is injective and T_α^{-1} is discontinuous,
(3) T_α is not injective.

Remark 2.2. Combining (A), (B), (C) and (1), (2), (3); we get nine different cases. These are labeled by $A_1, A_2, A_3, B_1, B_2, B_3, C_1, C_2$ and C_3. The notation $\alpha \in A_2\sigma(T, X)$ means the operator $T_\alpha \in A_2$, i.e., $R(T_\alpha) = X$ and T_α is injective but T_α^{-1} is discontinuous. Similarly others.

Remark 2.3. If α is a complex number such that $T_\alpha \in A_1$ or $T_\alpha \in B_1$, then α belongs to the resolvent set $\rho(T, X)$ of T on X. The other classification gives rise to the fine spectrum of T.

Lemma 2.4. ([14], pp. 129) The matrix $A = (a_{nk})$ gives rise to a bounded linear operator $T \in B(c_0)$ from c_0 to itself if and only if
(i) the rows of A in l_1 and their l_1 norms are bounded, and
(ii) the columns of A are in c_0.

Note: The operator norm of T is the supremum of the l_1 norms of the rows.

Lemma 2.5. ([13], pp. 59) T has a dense range if and only if T^\times is one to one, where T^\times denotes the adjoint operator of the operator T.

Lemma 2.6. ([13], pp. 60) The adjoint operator T^\times of T is onto if and only if T has a bounded inverse.

3 Main Results

3.1 Spectrum and Point Spectrum of the Operator Δ_{uv} on the Sequence Space c_0

In this section we obtain spectrum and point spectrum of the operator Δ_{uv} on c_0.

Theorem 3.1. The operator $\Delta_{uv} : c_0 \to c_0$ is a bounded linear operator and

$$\|\Delta_{uv}\|_{B(c_0)} = \sup_k (|u_k| + |v_{k-1}|).$$

Proof. Proof is simple. So we omit. \Box

Theorem 3.2. Spectrum of the operator Δ_{uv} on the sequence space c_0 is given by

$$\sigma(\Delta_{uv}, c_0) = \{ \alpha \in \mathbb{C} : |U - \alpha| \leq |V| \}.$$

Proof. The proof of this theorem is divided into two parts. In the first part, we show that $\sigma(\Delta_{uv}, c_0) \subseteq \{ \alpha \in \mathbb{C} : |U - \alpha| \leq |V| \}$, which is equivalent to

$$\alpha \in \mathbb{C} \text{ with } |U - \alpha| > |V| \text{ implies } \alpha \notin \sigma(\Delta_{uv}, c_0), \text{ i.e., } \alpha \in \rho(\Delta_{uv}, c_0).$$

In the second part, we establish the reverse inclusion, i.e.,

$$\{ \alpha \in \mathbb{C} : |U - \alpha| \leq |V| \} \subseteq \sigma(\Delta_{uv}, c_0).$$

Part I: Let $\alpha \in \mathbb{C}$ with $|U - \alpha| > |V|$. Clearly, $\alpha \neq U$ and $\alpha \neq u_k$ for each $k \in \mathbb{N}_0$ as it does not satisfy this condition. Further, $(\Delta_{uv} - \alpha I) = (a_{nk})$ reduces to a triangle and hence has an inverse $(\Delta_{uv} - \alpha I)^{-1} = (b_{nk})$, where

$$b_{nk} = \begin{cases} \frac{1}{(u_0 - \alpha)} & \text{for } k = 0, \\ \frac{1}{(u_0 - \alpha)(u_1 - \alpha)} \text{ for } k = 1, \\ \frac{1}{(u_0 - \alpha)(u_1 - \alpha)(u_2 - \alpha)} \text{ for } k = 2, \\ \vdots \end{cases}.$$

(QL.1)
By Lemma 2.4, the operator \((\Delta_{uv} - \alpha I)^{-1}\) is in \(B(\ell_0)\) if

(i) series \(\sum_{k=0}^{\infty} |b_{nk}|\) is convergent for each \(n \in \mathbb{N}_0\) and \(\sup_{n} \sum_{k=0}^{\infty} |b_{nk}| < \infty\), and

(ii) \(\lim_{n\to\infty} |b_{nk}| = 0\) for each \(k \in \mathbb{N}_0\).

In order to show \(\sup_{n} \sum_{k=0}^{\infty} |b_{nk}| < \infty\), first we prove that the series \(\sum_{k=0}^{\infty} |b_{nk}|\) is convergent for each \(n \in \mathbb{N}_0\). For this consider \(S_n = \sum_{k=0}^{\infty} |b_{nk}|\). Clearly, the series

\[
S_n = \left| \frac{v_0 v_1 \cdots v_{n-1}}{(u_0 - \alpha)(u_1 - \alpha) \cdots (u_n - \alpha)} \right| + \cdots + \left| \frac{v_{n-1}}{(u_{n-1} - \alpha)(u_n - \alpha)} \right| + \left| \frac{1}{(u_n - \alpha)} \right| \quad (3.2)
\]

is convergent for each \(n \in \mathbb{N}_0\). Now we claim that \(\sup_{n} S_n\) is finite. For this, suppose

\[
\beta = \lim_{n\to\infty} \left| \frac{v_{n-1}}{u_n - \alpha} \right|, \quad \text{which is equal to} \quad \left| \frac{V}{U - \alpha} \right|.
\]

So, \(0 < \beta < 1\). We choose \(\epsilon > 0\) such that \(\beta + \epsilon < 1\). Since \(\lim_{n\to\infty} \left| \frac{v_{n-1}}{u_n - \alpha} \right| = \beta\), so there exists a positive integer \(n_0\) such that

\[
\left| \frac{v_{n-1}}{u_n - \alpha} \right| < \beta + \epsilon \quad \text{and} \quad \left| \frac{1}{u_n - \alpha} \right| < \frac{\beta + \epsilon}{m} \quad \text{for all} \quad n \geq n_0, \quad (3.3)
\]

where \(m\) is a lower bound of bounded sequence \(v = (v_k)\).

For \(n \geq n_0\), \(S_n\) can be write as

\[
S_n = \left| \frac{v_0 v_1 \cdots v_{n_0-2} v_{n_0-1} \cdots v_{n-1}}{(u_0 - \alpha)(u_1 - \alpha)(u_2 - \alpha) \cdots (u_{n_0-1} - \alpha)(u_{n_0} - \alpha) \cdots (u_n - \alpha)} \right| + \cdots + \left| \frac{v_{n_0-1} \cdots v_{n-1}}{(u_{n_0-1} - \alpha)(u_{n_0} - \alpha) \cdots (u_n - \alpha)} \right| + \left| \frac{v_{n_0} \cdots v_{n-1}}{(u_{n_0} - \alpha)(u_{n_0+1} - \alpha) \cdots (u_n - \alpha)} \right| + \cdots + \left| \frac{1}{u_n - \alpha} \right|.
\]

Take

\[
M = \max \left\{ \left| \frac{1}{u_0 - \alpha} \right|, \cdots, \left| \frac{1}{u_{n_0-1} - \alpha} \right|, \left| \frac{v_0}{u_1 - \alpha} \right|, \cdots, \left| \frac{v_{n_0-2}}{u_{n_0-1} - \alpha} \right| \right\}.
\]

Using inequalities in (3.3), we have

\[
S_n < M^{n_0} (\beta + \epsilon)^{n-n_0+1} + \cdots + M (\beta + \epsilon)^{n-n_0+1} \frac{(\beta + \epsilon)^{n-n_0+1}}{m} + \cdots + (\beta + \epsilon) \frac{(\beta + \epsilon)^{n-n_0+1}}{m}
\]

\[
= (\beta + \epsilon)^{n-n_0+1} \left[M^{n_0} + \cdots + M \right] + \frac{(\beta + \epsilon)}{m} \left[1 + \cdots + (\beta + \epsilon)^{n-n_0} \right]
\]

\[
< [M^{n_0} + \cdots + M] + \frac{1}{m} \left[\frac{1}{1 - (\beta + \epsilon)} \right] < \infty.
\]
Thus, $S_n < \infty$ for each $n \in \mathbb{N}$ and hence $\sup_n S_n < \infty$.

Again, since $\beta < 1$, therefore $|v_{n-1}| \over |u_n - \alpha| < 1$ for large n and consequently,

$$\lim_{n \to \infty} |b_{n0}| = \lim_{n \to \infty} \frac{v_0 v_1 \cdots v_{n-1}}{(u_0 - \alpha)(u_1 - \alpha) \cdots (u_n - \alpha)} = 0.$$

Similarly, we can show that $\lim_{n \to \infty} |b_{nk}| = 0$ for all $k = 1, 2, 3, \cdots$.

Thus,

$$(\Delta_{uv} - \alpha I)^{-1} \in B(c_0) \text{ for } \alpha \in \mathbb{C} \text{ with } |U - \alpha| > |V|. \quad (3.4)$$

Next, we show that domain of the operator $(\Delta_{uv} - \alpha I)^{-1}$ is dense in c_0, which follows if the operator $(\Delta_{uv} - \alpha I)$ is onto. Suppose $(\Delta_{uv} - \alpha I)x = y$, which gives

$$x = (\Delta_{uv} - \alpha I)^{-1} y, \text{ i.e., } x_n = ((\Delta_{uv} - \alpha I)^{-1} y)_n, \ n \in \mathbb{N}.0.$$

Thus for every $y \in c_0$, we can find $x \in c_0$ such that $(\Delta_{uv} - \alpha I)x = y$. Hence we have

$$\sigma(\Delta_{uv}, c_0) \subseteq \{\alpha \in \mathbb{C} : |U - \alpha| \leq |V|\}.$$

Part II: Conversely it is required to show

$$\{\alpha \in \mathbb{C} : |U - \alpha| \leq |V|\} \subseteq \sigma(\Delta_{uv}, c_0). \quad (3.6)$$

We first prove inclusion [3.6] under the assumption $\alpha \neq U$ and $\alpha \neq u_k$ for each $k \in \mathbb{N}$. Let $\alpha \in \mathbb{C}$ with $|U - \alpha| \leq |V|$. Clearly, $(\Delta_{uv} - \alpha I)$ is a triangle and hence $(\Delta_{uv} - \alpha I)^{-1}$ exists. So condition (R1) is satisfied but condition (R2) fails as can be seen below:

Suppose $\alpha \in \mathbb{C}$ with $|U - \alpha| < |V|$. Then $\beta > 1$. This means that $|v_{n-1}| > 1$ for large n and consequently, $\lim_{n \to \infty} |b_{n0}| \neq 0$. Hence

$$(\Delta_{uv} - \alpha I)^{-1} \notin B(c_0) \text{ for } \alpha \in \mathbb{C} \text{ with } |U - \alpha| < |V|. \quad (3.7)$$

Next, we consider $\alpha \in \mathbb{C}$ with $|U - \alpha| = |V|$. Proof is by contradiction. Equality [3.2] can be write as

$$S_n = \frac{v_{n-1}}{|u_n - \alpha|} S_{n-1} + \frac{1}{|u_n - \alpha|}.$$

Taking limit both sides of equality [3.8] and using condition $|U - \alpha| = |V|$, we get

$$\lim_{n \to \infty} \frac{1}{V} = 0,$$

which is not possible. Thus, $\lim_{n \to \infty} S_n$ does not exist and consequently, $\sup_n S_n$ is unbounded. Hence

$$(\Delta_{uv} - \alpha I)^{-1} \notin B(c_0) \text{ for } \alpha \in \mathbb{C} \text{ with } |U - \alpha| = |V|. \quad (3.9)$$
Finally, we prove the inclusion (3.6) under the assumption $\alpha = U$ and $\alpha = u_k$ for all $k \in \mathbb{N}_0$. For this, we consider

$$(\Delta_{uv} - \alpha I) x = \begin{pmatrix} (u_0 - \alpha)x_0 \\ v_0x_0 + (u_1 - \alpha)x_1 \\ \vdots \\ -v_{k-1}x_{k-1} + (u_k - \alpha)x_k \\ \vdots \end{pmatrix}.$$ \hspace{1cm} (3.13)

Case (i): If (u_k) is a constant sequence, say $u_k = U$ for all $k \in \mathbb{N}_0$, then for $\alpha = U$

$$(\Delta_{uv} - UI)x = 0 \Rightarrow x_0 = 0, x_1 = 0, x_2 = 0, \ldots$$

This shows that the operator $(\Delta_{uv} - UI)$ is one to one, but $R(\Delta_{uv} - UI)$ is not dense in c_0. So condition (R3) fails. Hence $U \in \sigma(\Delta_{uv}, c_0)$.

Case (ii): If (u_k) is a sequence of distinct real numbers, then the series S_k is divergent for each $\alpha = u_k$ from equality (3.2) and consequently, $\sup_n S_n$ is unbounded.

Hence

$$(\Delta_{uv} - \alpha I)^{-1} \notin B(c_0)$$ for $\alpha = u_k$. \hspace{1cm} (3.10)

So condition (R2) fails. Hence $u_k \in \sigma(\Delta_{uv}, c_0)$ for all $k \in \mathbb{N}_0$.

Again, taking limit both sides of equality (3.9), we see that $\lim_{n \to \infty} S_n$ does not exist for $\alpha = U$. So $\sup_n S_n$ is unbounded. Hence

$$(\Delta_{uv} - \alpha I)^{-1} \notin B(c_0)$$ for $\alpha = U$. \hspace{1cm} (3.11)

So condition (R2) fails. Hence $U \in \sigma(\Delta_{uv}, c_0)$. Thus, in this case also $u_k \in \sigma(\Delta_{uv}, c_0)$ for all $k \in \mathbb{N}_0$ and $U \in \sigma(\Delta_{uv}, c_0)$. Hence we have

$${\alpha \in \mathbb{C} : |U - \alpha| < |V|} \subseteq \sigma(\Delta_{uv}, c_0).$$ \hspace{1cm} (3.12)

From inclusions (3.5) and (3.12), we get

$$\sigma(\Delta_{uv}, c_0) = \{\alpha \in \mathbb{C} : |U - \alpha| < |V|\}.$$ This completes the proof. \hspace{1cm} \square

Theorem 3.3. Point spectrum of the operator Δ_{uv} on the sequence space c_0 is

$$\sigma_p(\Delta_{uv}, c_0) = \emptyset.$$

Proof. For the point spectrum of the operator Δ_{uv}, we find those α in \mathbb{C} such that the matrix equation $\Delta_{uv}x = \alpha x$ is satisfy for non-zero vector $x = (x_k)$ in c_0.

Consider $\Delta_{uv}x = \alpha x$ for $x \neq 0 = (0, 0, \cdots)$ in c_0, which gives system of equations

$$\begin{align*}
u_0x_0 &= \alpha x_0 \\
v_0x_0 + u_1x_1 &= \alpha x_1 \\
\vdots \\
v_{k-1}x_{k-1} + u_kx_k &= \alpha x_k \\
\vdots \end{align*}$$ \hspace{1cm} (3.13)
The proof of this Theorem is divided into two cases.

Case (i): Suppose \((u_k)\) is a constant sequence, say \(u_k = U\) for all \(k \in \mathbb{N}_0\). Let \(x_i\) be the first nonzero entry of the sequence \(x = (x_n)\). Then equation \(v_{i-1}x_{i-1} + Ux_t = \alpha x_t\) gives \(\alpha = U\), and from the equation \(v_i x_t + U x_{i+1} = \alpha x_{i+1}\), we get \(x_i = 0\), which is a contradiction to our assumption. Hence \(\sigma_p(\Delta_{uv}, c_0) = \emptyset\).

Case (ii): Suppose \((u_k)\) is a sequence of distinct real numbers. Clearly, \(x_k = (v_k - 1)\alpha - u_k \) for all \(k \geq 1\).

If \(\alpha = u_0\), then \(\lim_{k \to \infty} \frac{|x_k|}{|x_{k-1}|} > 1\) because \(|U - u_0| < |V|\).

So \(x \notin l_1\) and hence \(x \notin c_0\) for \(x_0 \neq 0\).

Similarly, if \(\alpha = u_k\) for all \(k \geq 1\), then \(x_{k-1} = 0\), \(x_{k-2} = 0\), \(\cdots\), \(x_0 = 0\) and

\[x_{n+1} = \left(\frac{v_n}{u_k - u_{n+1}}\right) x_n \text{ for all } n \geq k, \]

This implies \(\lim_{n \to \infty} \frac{|x_{n+1}|}{|x_n|} > 1\) because \(|U - u_k| < |V|\) for all \(k \geq 1\).

So \(x \notin l_1\) and hence \(x \notin c_0\) for \(x_0 \neq 0\). If \(x_0 = 0\), then \(x_k = 0\) for all \(k \geq 1\). Only possibility is \(x = 0 = (0, 0, \cdots)\). Hence \(\sigma_p(\Delta_{uv}, c_0) = \emptyset\). \(\square\)

3.2 Residual and Continuous Spectrum of the Operator \(\Delta_{uv}\) on the Sequence Space \(c_0\)

Let \(T : X \to X\) be a bounded linear operator having matrix representation \(A\) and the dual space of \(X\) denoted by \(X^*\). Again, let \(T^*\) be its adjoint operator on \(X^*\). Then the matrix representation of \(T^*\) is the transpose of the matrix \(A\).

Theorem 3.4. Point spectrum of the adjoint operator \(\Delta_{uv}^*\) on \(c_0^*\) is

\[\sigma_p(\Delta_{uv}^*, c_0^*) = \{ \alpha \in \mathbb{C} : |U - \alpha| < |V| \} . \]

Proof. For the point spectrum of the operator \(\Delta_{uv}^*\), we find those \(\alpha\) in \(\mathbb{C}\) such that the matrix equation \(\Delta_{uv}^* f = \alpha f\) is satisfy for non-zero vector \(f = (f_k)\) in \(c_0^* \cong l_1\). Consider \(\Delta_{uv}^* f = \alpha f\), which gives system of equations

\[
\begin{align*}
 u_0 f_0 + v_0 f_1 & = \alpha f_0 \\
 u_1 f_1 + v_1 f_2 & = \alpha f_1 \\
 & \vdots \\
 u_{k-1} f_{k-1} + v_{k-1} f_k & = \alpha f_{k-1} \\
 & \vdots
\end{align*}
\]

This gives

\[|f_k| = \frac{|\alpha - u_{k-1}|}{|v_{k-1}|} |f_{k-1}| \text{ for all } k \geq 1. \] (3.14)
Now, we take those $\alpha \in \mathbb{C}$ which satisfy the condition $|U - \alpha| < |V|$.

From equality (3.14), $\lim_{k \to \infty} \frac{|f_k|}{|f_{k-1}|} < 1$. So, series $\sum_{k=0}^{\infty} |f_k|$ converges and hence $f \in l_1$. Thus, $\alpha \in \mathbb{C}$ satisfying the condition $|U - \alpha| < |V|$ implies $f \in l_1$.

Conversely, we show that

$$\sum_{k=0}^{\infty} |f_k| < \infty$$ implies $\alpha \in \mathbb{C}$ satisfy the condition $|U - \alpha| < |V|$ or equivalently for $\alpha \in \mathbb{C}$ satisfy the condition $|U - \alpha| \geq |V|$ implies $\sum_{k=0}^{\infty} |f_k|$ diverges. We first consider $\alpha \in \mathbb{C}$ which satisfy the condition $|U - \alpha| > |V|$. From equality (3.14), $\lim_{k \to \infty} \frac{|f_k|}{|f_{k-1}|} > 1$. So, series $\sum_{k=0}^{\infty} |f_k|$ diverges.

Next, we consider $\alpha \in \mathbb{C}$ such that $|U - \alpha| = |V|$, i.e., $\lim_{k \to \infty} \left| \frac{u_k - \alpha}{v_k} \right| = 1$. So for each $\epsilon > 0$, there exists a positive integer k_0 such that

$$1 - \epsilon < \left| \frac{u_k - \alpha}{v_k} \right| < 1 + \epsilon \quad \text{for all } k \geq k_0. \quad (3.15)$$

Take

$$m = \min \left\{ \left| \frac{u_0 - \alpha}{v_0} \right|, \left| \frac{u_1 - \alpha}{v_1} \right|, \ldots, \left| \frac{u_{k_0-1} - \alpha}{v_{k_0-1}} \right| \right\}. \quad (3.16)$$

Using equality (3.14), the series $\sum_{k=0}^{\infty} |f_k|$ can be write as

$$\sum_{k=0}^{\infty} |f_k| = |f_0| + \left| \frac{u_0 - \alpha}{v_0} \right| |f_0| + \cdots + \left| \frac{u_{k_0-1} - \alpha}{v_{k_0-1}} \right| |f_0| + \left| \frac{u_0 - \alpha}{v_0} \right| \cdots \left| \frac{u_{k_0-1} - \alpha}{v_{k_{0-1}}} \right| |f_0| + \cdots > |f_0| + m |f_0| + \cdots + m^k |f_0| + m^k (1 - \epsilon) |f_0| + m^k (1 - \epsilon)^2 |f_0| + \cdots,$$

(3.15) and (3.16)

$$= (1 + m + \cdots + m^{k-1}) |f_0| + \frac{m^k |f_0|}{\epsilon} \to \infty \text{ as } \epsilon \to 0.$$

So, in this case also series $\sum_{k=0}^{\infty} |f_k|$ diverges. Thus, $f \in l_1$ implies $\alpha \in \mathbb{C}$ satisfying the condition $|U - \alpha| < |V|$.

This means that $f \in c_0^*$ if and only if $f_0 \neq 0$ and $\alpha \in \mathbb{C}$ such that $|U - \alpha| < |V|$. Hence
\[\sigma_p(\Delta_{uv}, c_0^*) = \{ \alpha \in \mathbb{C} : |U - \alpha| < |V| \}. \]

Theorem 3.5. Residual spectrum of the operator \(\Delta_{uv} \) on the sequence space \(c_0 \) is
\[\sigma_r(\Delta_{uv}, c_0) = \{ \alpha \in \mathbb{C} : |U - \alpha| < |V| \}. \]

Proof. The proof of this theorem is divided into two cases.

Case(i): Suppose \((u_k)\) is a constant sequence, say \(u_k = U\) for all \(k \in \mathbb{N}_0\). For \(\alpha \in \mathbb{C}\) with \(|U - \alpha| < |V|\), the operator \((\Delta_{uv} - \alpha I)\) is a triangle except \(\alpha = U\) and consequently, the operator \((\Delta_{uv} - \alpha I)\) has an inverse. Further by Theorem 3.3, the operator \((\Delta_{uv} - \alpha I)\) is one to one for \(\alpha = U\) and hence has an inverse.

But by Theorem 3.4, the operator \((\Delta_{uv} - \alpha I)^\ast\) is not one to one for \(\alpha \in \mathbb{C}\) with \(|U - \alpha| < |V|\). Hence by Lemma 2.5, the range of the operator \((\Delta_{uv} - \alpha I)\) is not dense in \(c_0\). Thus, \(\sigma_r(\Delta_{uv}, c_0) = \{ \alpha \in \mathbb{C} : |U - \alpha| < |V| \}\).

Case(ii): Suppose \((u_k)\) is a sequence of distinct real numbers. For \(\alpha \in \mathbb{C}\) such that \(|U - \alpha| < |V|\), the operator \((\Delta_{uv} - \alpha I)\) is a triangle except \(\alpha = u_k\) for all \(k \in \mathbb{N}_0\) and consequently, the operator \((\Delta_{uv} - \alpha I)\) has an inverse. Further by Theorem 3.3, the operator \((\Delta_{uv} - u_k I)\) is one to one and hence \((\Delta_{uv} - u_k I)^{-1}\) exists for all \(k \in \mathbb{N}_0\).

On the basis of argument as given in Case(i), it is easy to verify that the range of the operator \((\Delta_{uv} - \alpha I)\) is not dense in \(c_0\). Thus, \(\sigma_r(\Delta_{uv}, c_0) = \{ \alpha \in \mathbb{C} : |U - \alpha| < |V| \}\).

Theorem 3.6. Continuous spectrum of the operator \(\Delta_{uv}\) on the sequence space \(c_0\) is
\[\sigma_c(\Delta_{uv}, c_0) = \{ \alpha \in \mathbb{C} : |U - \alpha| = |V| \}. \]

Proof. The proof of this theorem is divided into two cases.

Case(i): Suppose \((u_k)\) is a constant sequence. For \(\alpha \in \mathbb{C}\) with \(|U - \alpha| = |V|\), the operator \((\Delta_{uv} - \alpha I)\) is a triangle because \(\alpha \neq U\) and has an inverse. The operator \((\Delta_{uv} - \alpha I)^{-1}\) is discontinuous by condition (3.9). Therefore, the operator \((\Delta_{uv} - \alpha I)\) has an unbounded inverse.

As the operator \((\Delta_{uv} - \alpha I)^\ast\) is one to one for \(\alpha \in \mathbb{C}\) satisfying \(|U - \alpha| = |V|\) follows from Theorem 3.3. So, the range of the operator \((\Delta_{uv} - \alpha I)\) is dense in \(c_0\) by Lemma 2.5. Hence
\[\sigma_c(\Delta_{uv}, c_0) = \{ \alpha \in \mathbb{C} : |U - \alpha| = |V| \}. \]

Case(ii): Suppose \((u_k)\) is a sequence of distinct real numbers. For \(\alpha \in \mathbb{C}\) with \(|U - \alpha| = |V|\), the operator \((\Delta_{uv} - \alpha I)\) is a triangle because \(\alpha \neq u_k\) for each \(k \in \mathbb{N}\) and consequently, the operator \((\Delta_{uv} - \alpha I)\) has an inverse. The operator \((\Delta_{uv} - \alpha I)^{-1}\) is discontinuous by condition (3.9). Therefore, \((\Delta_{uv} - \alpha I)\) has an unbounded inverse.
On the basis of argument as given in Case (i), it is easy to verify that the range of the operator \((\Delta uv - \alpha I)\) is dense in \(c_0\). Hence
\[
\sigma_c(\Delta uv, c_0) = \{\alpha \in \mathbb{C} : |U - \alpha| = |V|\}. \quad \square
\]

3.3 Fine Spectrum of the Operator \(\Delta uv\) on the Sequence Space \(c_0\)

Theorem 3.7. If \(\alpha\) satisfies \(|U - \alpha| > |V|\), then \((\Delta uv - \alpha I)\) ∈ \(A_1\).

Proof. It is required to show that the operator \((\Delta uv - \alpha I)\) is bijective and has a continuous inverse for \(\alpha \in \mathbb{C}\) with \(|U - \alpha| > |V|\). Since \(\alpha \neq U\) and \(\alpha \neq u_k\) for each \(k \in \mathbb{N}_0\), therefore the operator \((\Delta uv - \alpha I)\) is a triangle. Hence it has an inverse. The operator \((\Delta uv - \alpha I)^{-1}\) is continuous for \(\alpha \in \mathbb{C}\) with \(|U - \alpha| > |V|\) by statement (3.4). Also the equation
\[
(\Delta uv - \alpha I)x = y \quad \text{gives} \quad x = (\Delta uv - \alpha I)^{-1}y, \quad \text{i.e.,}
\]
\[
x_n = ((\Delta uv - \alpha I)^{-1}y)_n, \quad n \in \mathbb{N}_0.
\]
Thus, for every \(y \in c_0\), we can find \(x \in c_0\) such that
\[
(\Delta uv - \alpha I)x = y, \quad \text{since} \quad (\Delta uv - \alpha I)^{-1} \in B(c_0).
\]
This shows that the operator \((\Delta uv - \alpha I)\) is onto and hence \((\Delta uv - \alpha I)\) ∈ \(A_1\). \quad \square

Theorem 3.8. Let \(u\) be constant sequence, say \(u_k = U\) for all \(k \in \mathbb{N}_0\). Then \(U \in C_1\sigma(\Delta uv, c_0)\).

Proof. We have \(\sigma_r(\Delta uv, c_0) = \{\alpha \in \mathbb{C} : |U - \alpha| < |V|\}\). Clearly, \(U \in \sigma_r(\Delta uv, c_0)\).

It is sufficient to show that the operator \((\Delta uv - UI)^{-1}\) is continuous. By Lemma 2.6, it is enough to show that \((\Delta uv - UI)^{\times}\) is onto, i.e., for given \(y = (y_n) \in c_0^{\times}\), we have to find \(x = (x_n) \in c_0^{\times}\) such that \((\Delta uv - UI)^{\times}x = y\). Now \((\Delta uv - UI)^{\times}x = y\), i.e.,
\[
\begin{align*}
v_0x_1 &= y_0 \\
v_1x_2 &= y_1 \\
\vdots \\
v_{i-1}x_i &= y_{i-1} \\
\vdots
\end{align*}
\]
Thus, \(v_nx_n = y_{n-1}\) for all \(n \geq 1\) which implies \(\sum_{n=0}^{\infty} |x_n| < \infty\), since \(y \in l_1\) and \(v = (v_k)\) is a convergent sequence. This shows that operator \((\Delta uv - UI)^{\times}\) is onto and hence \(U \in C_1\sigma(\Delta uv, c_0)\). \quad \square
Theorem 3.9. Let \(u \) be constant sequence, say \(u_k = U \) for all \(k \in \mathbb{N}_0 \) and \(\alpha \neq U \) but \(\alpha \in \sigma_r(\Delta_{uv},c_0) \). Then \(\alpha \in C_2\sigma(\Delta_{uv},c_0) \).

Proof. It is sufficient to show that the operator \((\Delta_{uv} - \alpha I)^{-1} \) is discontinuous for \(\alpha \neq U \) and \(\alpha \in \sigma_r(\Delta_{uv},c_0) \). The operator \((\Delta_{uv} - \alpha I)^{-1} \) is discontinuous by statement (3.7) for \(U \neq \alpha \in \mathbb{C} \) with \(|U - \alpha| < |V| \).

Theorem 3.10. Let \(u \) be a sequence of distinct real numbers and \(\alpha \in \sigma_r(\Delta_{uv},c_0) \). Then \(\alpha \in C_2\sigma(\Delta_{uv},c_0) \).

Proof. It is sufficient to show that the operator \((\Delta_{uv} - \alpha I)^{-1} \) is discontinuous for \(\alpha \in \sigma_r(\Delta_{uv},c_0) \). The operator \((\Delta_{uv} - \alpha I)^{-1} \) is discontinuous by statements (3.7), (3.10) and (3.11) for \(\alpha \in \mathbb{C} \) with \(|U - \alpha| < |V| \).

Theorem 3.11. Let \(u \) and \(v \) be constant sequences and \(\alpha \in \sigma_c(\Delta_{uv},c_0) \). Then \(\alpha \in B_2\sigma(\Delta_{uv},c_0) \).

Proof. It is sufficient to show that the operator \((\Delta_{uv} - \alpha I) \) is not onto, i.e., there is no sequence \(x = (x_n) \) in \(c_0 \) such that \((\Delta_{uv} - \alpha I)x = y \) for some \(y \in c_0 \). Clearly, \(y = (1,0,0,\cdots) \in c_0 \). We have

\[
(\Delta_{uv} - \alpha I)x = y \implies x_n = (-1)^n \frac{V^n}{(U - \alpha)^{n+1}} \text{ for each } n \geq 0.
\]

Therefore, \(|x_n| = \left| \frac{1}{V} \right| \) for each \(n \geq 0 \) because \(|U - \alpha| = |V| \). Consequently, \(\lim_{n \to \infty} |x_n| = \left| \frac{1}{V} \right| > 0 \). This shows that \(x \notin c_0 \) and hence the operator \((\Delta_{uv} - \alpha I) \) is not onto.

Acknowledgements: I would like to thank the referee(s) for his comments and suggestions on the manuscript. This work was supported by the Indian Institute of Technology, Kharagpur.

References

(Received 12 July 2012)
(Accepted 12 September 2016)