Meromorphic Functions That Share One Finite Value DM with Their First Derivative

Amer H. H. Al-Khaladi
Department of Mathematics, College of Science
Diyala University, Baquba, Iraq
e-mail: ameralkhaladi@yahoo.com

Abstract: This paper has studied the uniqueness of meromorphic functions that share one finite value DM (different multiplicities) with first derivatives and obtains some results which improve a result given by Zhang [1].

Keywords: Nevanlinna theory; uniqueness theorem; share DM; meromorphic function.

2010 Mathematics Subject Classification: 30D35.

1 Introduction

We say that two nonconstant meromorphic functions \(f \) and \(g \) share the finite value \(a \) IM (ignoring multiplicities), if \(f - a \) and \(g - a \) have the same zeros. If \(f - a \) and \(g - a \) have the same zeros with the same multiplicities, we say that \(f \) and \(g \) share the value \(a \) CM (counting multiplicities). If \(f - a \) and \(g - a \) have the same zeros with the different multiplicities, we say that \(f \) and \(g \) share the value \(a \) DM (different multiplicities). In this paper the term “meromorphic” will always mean meromorphic in the complex plane. We use the standard notations and results of the Nevanlinna theory (see [2], for example). In particular, \(S(r, f) \) denotes any quantity satisfying \(S(r, f) = o(T(r, f)) \) as \(r \to \infty \), except possibly for a set \(E \) of \(r \) of finite linear measure. Let \(k \) be a positive integer, we denote by \(N_k(r, f - a) \) the counting function of zeros of \(f - a \) with multiplicity \(\leq k \) and by \(N_{k+1}(r, \frac{1}{f-a}) \) the
counting function of zeros of $f - a$ with multiplicity $> k$. Definitions of the terms $N_k(r,f)$ and $N_{k+1}(r,f)$ can be similarly formulated. Finally $N_2(r,\frac{1}{f})$ denotes the counting function of zeros of f where a zero of multiplicity k is counted with multiplicity $\min\{k,2\}$.

Rubel and Yang \[3\] proved the following result:

Theorem 1.1. If a nonconstant entire function f and its derivative f' share two finite values CM, then $f \equiv f'$.

Mues and Steinmetz \[4\] have shown that “CM” can be replaced by “IM” in Theorem 1.1 and Gundersen \[5\] have shown that “entire” can be replaced by “meromorphic” in Theorem 1.1.

On the other hand, the meromorphic function \[4\]

$$f(z) = \left[\frac{1}{2} - \frac{\sqrt{5}}{2} \tan \left(\frac{\sqrt{5}}{4} iz\right)\right]^2$$

(1.1)

shares 0 by DM and 1 by IM (neither CM nor DM) with f', while the meromorphic function \[6\]

$$f(z) = \frac{2a}{1 - ce^{-2z}}$$

(1.2)

shares 0 CM and a DM with f', where c and a are nonzero constants. It immediately yields from (1.1) and (1.2) that $f \not\equiv f'$.

Zhang \[1\] proved the following theorem:

Theorem 1.2. Let f be a nonconstant meromorphic function, a be a nonzero finite complex constant. If f and f' share 0 CM, and share a IM, then $f \equiv f'$ or f is given as (1.2).

From example (1.2) we also see that $N(r,\frac{1}{f}) = N(r,\frac{1}{f'}) = 0$.

2 Main Results

The purpose of this paper is to prove:

Theorem 2.1. Let f be a nonconstant meromorphic function. Suppose that f and f' share the value a ($\neq 0, \infty$) DM. Then either

$$f(z) = \frac{a[1 + b + (b - 1)ce^{2b\ell z}]}{1 - ce^{2b\ell z}},$$

(2.1)

where b, c, ℓ are nonzero constants and $b^2\ell = -1$, or

$$T(r,f') \leq 12\bar{N} \left(r, \frac{1}{f'} \right) + S(r,f)$$

(2.2)

and

$$T(r,f) \leq \frac{11}{2} N_2 \left(r, \frac{1}{f} \right) + S(r,f).$$

(2.3)
Proof. Suppose that $a = 1$ (the general case follows by considering $\frac{1}{a} f$ instead of f). We consider the following function

$$
\psi = \frac{2f'}{f-1} - \frac{3f''}{2(f'-1)} + \frac{f'''}{f' - f''}.
$$

(2.4)

From the fundamental estimate of logarithmic derivative it follows that

$$
m(r, \psi) = S(r, f).
$$

(2.5)

Since f and f' share $1 ~ DM$, all zeros of $f - 1$ are simple and all zeros of $f' - 1$ with multiplicities not less than two. And so

$$
N\left(r, \frac{1}{f-1}\right) = N_1\left(r, \frac{1}{f-1}\right)
$$

(2.6)

and

$$
N\left(r, \frac{1}{f-1}\right) = \tilde{N}\left(r, \frac{1}{f'-1}\right) = \tilde{N}(2)\left(r, \frac{1}{f'-1}\right).
$$

(2.7)

Suppose that z_2 is a zero of $f' - 1$ with multiplicity 2. Since f and f' share $1 ~ DM$, we see from (2.6) and (2.4) that

$$
\psi(z_2) = 0.
$$

(2.8)

If z_∞ is a simple pole of f, then an elementary calculation gives that

$$
\psi(z_\infty) = O(1).
$$

(2.9)

It follows from (2.6) - (2.9) that the poles of ψ can only occur at zeros of f', or zeros of f'' which are not zeros of $f'(f' - 1)$, zeros of $f' - 1$ with multiplicities not less than three and multiple poles of f. Thus

$$
N(r, \psi) \leq \tilde{N}\left(r, \frac{1}{f'}\right) + \tilde{N}_3\left(r, \frac{1}{f'-1}\right) + \tilde{N}(2)(r, f) + \tilde{N}_0\left(r, \frac{1}{f''}\right),
$$

(2.10)

where $\tilde{N}_0(r, \frac{1}{f''})$ denotes the counting function corresponding to the zeros of f'' that are not zeros of $f'(f' - 1)$, each zero in this counting function is counted only once.

We distinguish the following two cases

Case 1. $\psi \equiv 0$. Then, by integrating two sides of (2.4) we obtain

$$
\frac{(f - 1)^4}{(f' - 1)^3} = c\left(\frac{f'}{f''}\right)^2,
$$

(2.11)

where c is a nonzero constant. If z_q is a zero of $f' - 1$ with multiplicity $q \geq 3$, then from (2.6) and (2.11) we see that

$$
O((z - z_q)^{2-q}) = c.
$$
This implies that \(q = 2 \), a contradiction. Therefore
\[
N_{13} \left(r, \frac{1}{f' - 1} \right) = 0. \tag{2.12}
\]
Also if \(z_p \) is a pole of \(f \) with multiplicity \(p \geq 2 \), then from (2.11) we find that
\[
O((z - z_p)^{1-p}) = c.
\]
Hence \(p = 1 \), a contradiction. Therefore
\[
N_{22}(r, f) = 0. \tag{2.13}
\]
It follows from \(f \) and \(f' \) share 1 DM, (2.6), (2.7), (2.12) and (2.13) that
\[
\frac{f' - 1}{f - 1} = e^\alpha, \tag{2.14}
\]
where \(\alpha \) is some entire function. Combining (2.11) and (2.14) we get
\[
\left(\frac{f''}{f'} \right) \left(\frac{f''}{f' - 1} - \frac{f''}{f} \right) = ce^{2\alpha}. \tag{2.15}
\]
Consequently,
\[
T(r, e^\alpha) = S(r, f). \tag{2.16}
\]
Also we know from (2.15) that
\[
\tilde{N} \left(r, \frac{1}{f'} \right) = S(r, f). \tag{2.17}
\]
Suppose that \(z_1 \) is a simple zero of \(f - 1 \). Then by (2.7) and (2.12) we have
\[
f(z) - 1 = (z - z_1) + a_3(z - z_1)^3 + \cdots, a_3 \neq 0 \tag{2.18}
\]
Substituting (2.18) into (2.11) and (2.14) we find that
\[
3a_3c = 4 \quad \text{and} \quad 3a_3 = e^{\alpha(z_1)},
\]
which implies
\[
e^{\alpha(z_1)} = \frac{4}{c}. \tag{2.19}
\]
If \(e^\alpha \neq \frac{4}{c} \), then we have from (2.6) and (2.16) that
\[
N \left(r, \frac{1}{f' - 1} \right) \leq N \left(r, \frac{1}{e^\alpha - \frac{1}{c}} \right) \leq T(r, e^\alpha) + O(1) = S(r, f). \tag{2.20}
\]
By (2.7), (2.17), (2.20) and the second fundamental theorem we have
\[
T(r, f') \leq \tilde{N} \left(r, \frac{1}{f'} \right) + \tilde{N} \left(r, \frac{1}{f' - 1} \right) + \tilde{N}(r, f) + S(r, f)
\leq \tilde{N}(r, f) + S(r, f).
Since
\[T(r, f') = m(r, f') + N(r, f') = m(r, f') + N(r, f) + \bar{N}(r, f), \]
it follows from the last inequality that
\[m(r, f') + N(r, f) = S(r, f), \]
and so \(T(r, f') = S(r, f) \). From this, (2.17) and (2.14) we get \(T(r, f) = S(r, f) \) which is impossible. Therefore \(e^\alpha \equiv \frac{4}{\psi} \). Together with (2.14) we arrive at the conclusion (2.1).

Case 2. \(\psi \neq 0 \). Then from (2.8), (2.5) and (2.10) we conclude that
\[
\bar{N}(2 \left(r, \frac{1}{f' - 1} \right)) - \bar{N}(3 \left(r, \frac{1}{f' - 1} \right)) \leq N \left(r, \frac{1}{\psi} \right) \leq T(r, \psi) + O(1)
\leq N(r, \psi) + m(r, \psi) + O(1)
\leq \bar{N} \left(r, \frac{1}{f'} \right) + \bar{N}(3 \left(r, \frac{1}{f' - 1} \right)) + \bar{N}(2(r, f))
+ \bar{N}_0 \left(r, \frac{1}{f''} \right) + S(r, f). \tag{2.21}
\]
Since \(N(r, f') = N(r, f) + \bar{N}(r, f) \), from the second fundamental theorem for \(f' \)
\[T(r, f') \leq \bar{N} \left(r, \frac{1}{f'} \right) + \bar{N} \left(r, \frac{1}{f' - 1} \right) + \bar{N}(r, f) - \bar{N}_0 \left(r, \frac{1}{f''} \right) + S(r, f), \tag{2.22}\]
we have
\[N(r, f) \leq \bar{N} \left(r, \frac{1}{f'} \right) + \bar{N} \left(r, \frac{1}{f' - 1} \right) - \bar{N}_0 \left(r, \frac{1}{f''} \right) + S(r, f). \tag{2.23}\]
Also, we know from (2.22) that
\[N \left(r, \frac{1}{f' - 1} \right) \leq \bar{N} \left(r, \frac{1}{f'} \right) + \bar{N} \left(r, \frac{1}{f' - 1} \right) + \bar{N}(r, f) - \bar{N}_0 \left(r, \frac{1}{f''} \right) + S(r, f). \]
Combining this with (2.23) we obtain
\[
N(r, f) - \bar{N}(r, f) + N \left(r, \frac{1}{f' - 1} \right) - 2\bar{N} \left(r, \frac{1}{f' - 1} \right) + 2\bar{N}_0 \left(r, \frac{1}{f''} \right)
\leq 2\bar{N} \left(r, \frac{1}{f'} \right) + S(r, f). \tag{2.24}
\]
Obviously,
\[N(r, f) - \bar{N}(r, f) \geq \bar{N}(2(r, f)), \tag{2.25} \]
and
\[N \left(r, \frac{f'}{f' - 1} \right) - 2 \tilde{N} \left(r, \frac{1}{f' - 1} \right) \geq \tilde{N} \left(r, \frac{1}{f' - 1} \right), \tag{2.26} \]
by (2.7). Thus from (2.24) - (2.26) we obtain
\[\tilde{N}_2(r, f) + \tilde{N}_3 \left(r, \frac{1}{f' - 1} \right) + 2 \tilde{N}_0 \left(r, \frac{1}{f'} \right) \leq 2 \tilde{N} \left(r, \frac{1}{f'} \right) + S(r, f). \]
From this and (2.21) we deduce that
\[\tilde{N}_2 \left(r, \frac{1}{f' - 1} \right) \leq 5 \tilde{N} \left(r, \frac{1}{f'} \right) + S(r, f). \]
Together with (2.7) we have
\[\tilde{N} \left(r, \frac{1}{f' - 1} \right) \leq 5 \tilde{N} \left(r, \frac{1}{f'} \right) + S(r, f). \tag{2.27} \]
From (2.27) and (2.23), it follows that
\[\tilde{N}(r, f) \leq 6 \tilde{N} \left(r, \frac{1}{f'} \right) + S(r, f). \tag{2.28} \]
Finally, Combining (2.22), (2.27) and (2.28) we find that
\[T(r, f') \leq 12 \tilde{N} \left(r, \frac{1}{f'} \right) + S(r, f). \]
This is the conclusion (2.2).

We set
\[G = \frac{1}{f} \left(\frac{f''}{f'} - 2 \frac{f'}{f' - 1} \right). \tag{2.29} \]
Then
\[
m(r, G) \leq m \left(r, \frac{f'}{f} \left(\frac{f''}{f'(f' - 1)} \right) \right) + m \left(r, \frac{f'}{f(f - 1)} \right) + O(1)
\leq 2m \left(r, \frac{f'}{f} \right) + m \left(r, \frac{f''}{f'} \right) + m \left(r, \frac{f''}{f' - 1} \right) + m \left(r, \frac{f'}{f - 1} \right) + O(1)
= S(r, f). \tag{2.30} \]
Suppose \(z_2 \) be a zero of \(f' - 1 \) with multiplicity 2. Since \(f \) and \(f' \) share 1 DM, we see from (2.29), (2.6) and (2.7) that
\[G(z_2) = O(1). \tag{2.31} \]
If \(z_\infty \) is a pole of \(f \) with multiplicity \(p \geq 1 \), then an elementary calculation gives that
\[G(z) = O((z - z_\infty)), \quad if \quad p = 1 \tag{2.32} \]
\[G(z) = O((z - z_{\infty})^{p-1}), \quad \text{if} \quad p \geq 2. \tag{2.33} \]

It follows from (2.6), (2.7), (2.31), (2.32) and (2.33) that the pole of \(G \) can only occur at zeros of \(f' - 1 \) with multiplicities not less than three and zeros of \(f \). Thus

\[N(r, G) \leq N_2 \left(r, \frac{1}{f} \right) + \tilde{N}_3 \left(\frac{1}{f' - 1} \right), \]

Together with (2.30) we have

\[T(r, G) \leq N_2 \left(r, \frac{1}{f} \right) + \tilde{N}_3 \left(\frac{1}{f' - 1} \right) + S(r, f). \tag{2.34} \]

We consider two cases:

Case I. \(G \equiv 0 \). Then (2.29) becomes

\[\frac{f''}{f' - 1} - 2 \frac{f'}{f - 1} = 0. \]

By integration, we get \(f' - 1 = \ell(f - 1)^2 \). We rewrite this in the form

\[\frac{f'}{f - 1 - b} - \frac{f'}{f - 1 + b} = 2b\ell, \tag{2.35} \]

where \(b^2\ell = -1 \). Integrating this once we arrive at the conclusion (2.1).

Case II. \(G \not\equiv 0 \). From (2.32), (2.33) and (2.34) we see that

\[
N(r, f) - \tilde{N}_2(r, f) \leq N \left(r, \frac{1}{G} \right) \leq -m \left(r, \frac{1}{G} \right) + T(r, G) + O(1) \\
\leq -m \left(r, \frac{1}{G} \right) + N_2 \left(r, \frac{1}{f} \right) + \tilde{N}_3 \left(r, \frac{1}{f' - 1} \right) + S(r, f). \tag{2.36}
\]

By rewriting (2.29) we have

\[f = \frac{1}{G} \left(\frac{f''}{f' - 1} - 2 \frac{f'}{f - 1} \right). \]

Therefore

\[m(r, f) \leq m \left(r, \frac{1}{G} \right) + m \left(r, \frac{f''}{f' - 1} \right) + m \left(r, \frac{f'}{f - 1} \right) + O(1) \]

\[\leq m \left(r, \frac{1}{G} \right) + S(r, f). \]

Combining this with (2.36) we have

\[T(r, f) \leq N_2 \left(r, \frac{1}{f} \right) + \tilde{N}_3 \left(\frac{1}{f' - 1} \right) + \tilde{N}_2(r, f) + S(r, f). \tag{2.37} \]
From (2.37) and (2.36), we obtain

\[
N\left(r, \frac{1}{f'^{-1}}\right) \leq T(r, f') + O(1) = m(r, f') + N(r, f') + O(1)
\]

\[
\leq m\left(r, \frac{f'}{f}\right) + m(r, f) + N(r, f) + \bar{N}(r, f) + O(1)
\]

\[
\leq T(r, f) + \bar{N}(r, f) + S(r, f)
\]

\[
\leq 2N_2\left(r, \frac{1}{f'}\right) + 2\bar{N}_3\left(\frac{1}{f'^{-1}}\right) + \bar{N}_{(2)}(r, f) + S(r, f). \quad (2.38)
\]

Set

\[
W = \frac{1}{f'} \left(\frac{f''}{f'^{-1}} - 3\frac{f'}{f'-1}\right). \quad (2.39)
\]

Proceeding as above, we have

\[
m(r, W) = S(r, f), \quad (2.40)
\]

\[
W(z_3) = O(1), \quad (2.41)
\]

\[
W(z) = O((z - z_\infty)^{p-1}), \quad (2.42)
\]

where \(z_3\) is a zero of \(f'-1\) with multiplicity 3 and \(z_\infty\) is a pole of \(f\) with multiplicity \(p \geq 1\). Thus

\[
N(r, W) \leq N_2\left(r, \frac{1}{f'}\right) + \bar{N}_2\left(\frac{1}{f'^{-1}}\right) + \bar{N}_{(4)}\left(\frac{1}{f'}\right).
\]

Together with (2.40) we find

\[
T(r, W) \leq N_2\left(r, \frac{1}{f'}\right) + \bar{N}_2\left(\frac{1}{f'^{-1}}\right) + \bar{N}_{(4)}\left(\frac{1}{f'}\right) + S(r, f). \quad (2.43)
\]

If \(W \equiv 0\), then

\[
\frac{f''}{f'-1} - 3\frac{f'}{f'-1} = 0.
\]

Therefore, we get \(f' - 1 = c(f - 1)^3\). This imply that

\[
N(r, f) = 0, \quad (2.44)
\]

and \(m(r, f') = 3m(r, f) + O(1)\). Hence \(m(r, f) = S(r, f)\). This together with (2.44) gives the contradiction \(T(r, f) = S(r, f)\). Therefore \(W \neq 0\). From this, (2.42) and (2.43) we see that

\[
\bar{N}_{(2)}(r, f) \leq N\left(r, \frac{1}{W}\right) \leq T(r, W) + O(1)
\]

\[
\leq N_2\left(r, \frac{1}{f'}\right) + \bar{N}_2\left(\frac{1}{f'^{-1}}\right) + \bar{N}_{(4)}\left(r, \frac{1}{f'-1}\right) + S(r, f). \quad (2.45)
\]
It follows from (2.7), (2.38) and (2.45) that
\[N\left(r, \frac{1}{f' - 1}\right) = \bar{N}\left(r, \frac{1}{f' - 1}\right) \leq 3N_2\left(r, \frac{1}{f}\right) + S(r, f). \] (2.46)

Also, from (2.37), (2.45) and (2.7) we find that
\[m\left(r, \frac{1}{f' - 1}\right) \leq 2N_2\left(r, \frac{1}{f}\right) + \bar{N}_{(r,1/f' - 1)} + S(r, f). \] (2.47)

Set
\[L = \frac{f''}{f(f-1)}. \] (2.48)

It is clear that
\[m(r, L) \leq m\left(r, \frac{f''}{f'} \left(\frac{f}{f(f-1)}\right)\right) = S(r, f). \] (2.49)

If \(z_\infty \) is a pole of \(f \) with multiplicity \(p \geq 1 \), then from (2.48) we see that \[L(z) = O\left((z-z_\infty)^{p-2}\right). \] (2.50)

Also, if \(z_q \) is a zero of \(f' - 1 \) with multiplicity \(q \geq 2 \), then from (2.48) we get
\[L(z) = O\left((z-z_q)^{q-2}\right). \] (2.51)

Therefore from (2.48), (2.50) and (2.51) we conclude that
\[N(r, L) \leq N_2\left(r, \frac{1}{f}\right) + N_{(r,f)}. \]

Together with (2.49) we have
\[T(r, L) \leq N_2\left(r, \frac{1}{f}\right) + N_{(r,f)} + S(r, f). \] (2.52)

If \(L \equiv 0 \), then \(f \) is a linear function. So \(f \) and \(f' \) can not share 1 DM which contradicts the condition of Theorem 2.1. Next we assume that \(L \neq 0 \). From this, (2.51) and (2.52) we see that
\[N_{(3)}\left(r, \frac{1}{f'-1}\right) - 2\bar{N}_{(3)}\left(r, \frac{1}{f'-1}\right) \leq N\left(r, \frac{1}{L}\right) \leq T(r, L) + O(1) \leq N_2\left(r, \frac{1}{f}\right) + N_{(r,f)} + S(r, f). \]

That is
\[N_{(3)}\left(r, \frac{1}{f'-1}\right) + \bar{N}_{(2)}(r, f) \leq N_2\left(r, \frac{1}{f}\right) + 2\bar{N}_{(3)}\left(r, \frac{1}{f'-1}\right) + \bar{N}(r, f) + S(r, f). \] (2.53)
Hence from this and (2.36) we obtain
\[\bar{N}_4 \left(r, \frac{1}{f' - 1} \right) + \bar{N}_{(2)}(r, f) \leq 2N_2 \left(r, \frac{1}{f} \right) + S(r, f), \]
and eliminating \(\bar{N}_{(2)}(r, f) \) between this and (2.37) gives
\[m \left(r, \frac{1}{f - 1} \right) + \bar{N}_4 \left(r, \frac{1}{f' - 1} \right) \leq 3N_2 \left(r, \frac{1}{f} \right) + S(r, f), \tag{2.54} \]
and eliminating \(\bar{N}_4(r, \frac{1}{f-1}) \) between (2.54) and (2.47) leads to
\[m \left(r, \frac{1}{f - 1} \right) \leq \frac{5}{2} N_2 \left(r, \frac{1}{f} \right) + S(r, f). \]
Combining this with (2.46) we will arrive at the conclusion (2.3). This completes the proof of Theorem 2.1.

Remark 2.2. From (2.1) we find that
\begin{enumerate}
\item If \(\ell = -1 \), then \(b = \pm 1 \). Hence (2.1) becomes \(f(z) = \frac{-2a}{1-ce^{-r}} \). This is (1.2).
\item If \(c = 1 \), then \(f(z) = a[1 - b \coth(b\ell z)] \).
\item If \(c = -1 \), then \(f(z) = a[1 - b \tanh(b\ell z)] \).
\item If \(b \neq \pm 1 \), then \(T(r, f) = N(r, \frac{1}{f}) + S(r, f) \).
\item \(N(r, \frac{1}{f'}) = 0 \).
\end{enumerate}

From Theorem 2.1 and Remarks 2.2 (3), we deduce readily the following corollaries:

Corollary 2.3. Let \(f \) be a nonconstant meromorphic function. If \(f \) and \(f' \) share the value \(a \) \((\neq 0, \infty) \) DM and if \(\bar{N}(r, \frac{1}{f'}) = S(r, f) \), then \(f \) is given as (2.1).

Corollary 2.4. Let \(f \) be a nonconstant meromorphic function. If \(f \) and \(f' \) share the value \(a \) \((\neq 0, \infty) \) DM and if \(\bar{N}(r, \frac{1}{f}) = S(r, f) \), then \(f \) is given as (1.2).

It is obvious that Corollary 2.3 is extension and improvement for Theorem 1.2 and Corollary 2.4 is improvement for Theorem 1.2.

Acknowledgement: I am grateful to the referees for valuable suggestion and comments.
References

(Received 26 February 2011)
(Accepted 20 March 2012)