A Fundamental Theorem of Co-Homomorphisms for Semirings

S. Ebrahimi Atani, S. Dolati Pish Hesari, and M. Khoramdel

Department of Mathematics, University of Guilan, Iran
e-mail: ebrahimi@guilan.ac.ir
saboura_dolati@yahoo.com
mehdikhoramdel@gmail.com

Abstract: The quotient structure of a semiring with non-zero identity modulo a Q-strong co-ideal has been introduced and studied in [1]. In this paper, we will introduce the notions of co-homomorphisms and Maximal co-homomorphisms for semirings. Using these notions, the fundamental theorem of co-homomorphisms will be generalized to include a large class of semirings.

Keywords: semiring; co-ideal; strong co-ideal; partitioning strong co-ideal; subtractive co-ideal; co-homomorphism; maximal co-homomorphism.

2010 Mathematics Subject Classification: 16Y60.

1 Introduction

P. J. Allen [2] introduced the notion of a Q-ideal and a construction process by which one can build the quotient structure of a semiring modulo a Q-ideal. Maximal homomorphisms were defined and examples of such homomorphisms were given. Using these notions, the fundamental theorem of homomorphisms for rings was generalized to include a large class of semirings. The present authors [3] have presented the notion of a Q-strong co-ideal I in the semiring R and constructed the quotient semiring R/I. In this paper, we extend the definition and results given by Allen to a more general Q-strong co-ideal case. In this paper, we introduce the notion of co-homomorphism and maximal co-homomorphism. We show if I is a Q-strong co-ideal of semiring R and $\phi : R \to R/I$ with $\phi(a) = qI$, ϕ is a co-homomorphism and ϕ is maximal if and only if I is a Q-strong co-ideal.

Copyright © 2014 by the Mathematical Association of Thailand. All rights reserved.
where \(q \) is the unique element of \(Q \) such that \(a \in qI \), then \(\phi \) is a maximal co-homomorphism. Also, it is shown if \(\phi \) is a co-homomorphism from the semiring \(R \) onto \(R' \) that is maximal, then \(R/\text{co-Ker}(\phi) \cong R' \).

For the sake of completeness, we state some definitions and notations used throughout. A commutative semiring \(R \) is defined as an algebraic system \((R, +, \cdot)\) such that \((R, +)\) and \((R, \cdot)\) are commutative semigroups, connected by \(ab + ac \) for all \(a, b, c \in R \), and there exists \(0, 1 \in R \) such that \(r + 0 = r \) and \(r0 = 0r = 0 \) and \(r1 = 1r = r \) for each \(r \in R \). In this paper all semirings considered will be assumed to be commutative semirings with non-zero identity.

In this paper, \(B \) denotes the boolean semiring \(\{0, 1\} \), which \(1 + 1 = 1 \).

Definition 1.1. Let \(R \) be a semiring.

(1) A non-empty subset \(I \) of \(R \) is called co-ideal, denoted by \(I \trianglelefteq R \), if it is closed under multiplication and satisfies the condition \(r + a \in I \) for all \(a \in I \) and \(r \in R \) (clearly, \(0 \in I \) if and only if \(I = R \)) ([3], [4]). A co-ideal \(I \) is called strong co-ideal if \(I \neq \emptyset \) [1].

(2) A co-ideal \(I \) of \(R \) is called subtractive if for each \(x, y \in R \) with \(x, xy \in I \), then \(y \in I \) [4].

(3) A proper co-ideal \(I \) of \(R \) is said to be maximal if \(J \) is a co-ideal of \(R \) with \(I \subseteq J \), then \(J = R \). It is known that maximal co-ideals are strong co-ideal [5].

(4) A mapping \(\varphi \) from the semiring \(R \) into the semiring \(R' \) will be called a homomorphism if \(\varphi(a + b) = \varphi(a) + \varphi(b) \) and \(\varphi(ab) = \varphi(a)\varphi(b) \) for each \(a, b \in R \). An isomorphism is a one-to-one homomorphism. The semirings \(R \) and \(R' \) will be called isomorphic (denoted by \(R \cong R' \)) if there exists an isomorphism from \(R \) onto \(R' \) [2].

Definition 1.2. (See [1]) A strong co-ideal \(I \) of a semiring \(R \) is called a partitioning co-ideal (= Q-strong co-ideal) if there exists a subset \(Q \) of \(R \) such that

(1) \(R = \bigcup\{qI : q \in Q\} \), where \(qI = \{qt : t \in I\} \),

(2) \(qI \cap (q2I) \neq \emptyset \) if and only if \(q1 = q2 \).

Lemma 1.3. (See [1]) Let \(I \) be a Q-strong co-ideal of the semiring \(R \). If \(x \in R \), then there exists a unique \(q \in Q \) such that \(xI \subseteq qI \). In particular, \(x = qa \) for some \(a \in I \).

Let \(I \) be a Q-strong co-ideal of a semiring \(R \) and let \(R/I = \{qI : q \in Q\} \). Then \(R/I \) forms a semiring under the binary operations \(\oplus \) and \(\circ \) defined as follows:

(1) \((q1I) \oplus (q2I) = q3I \), where \(q3 \) is the unique element in \(Q \) such that \((q1I + q2I) \subseteq q3I \); and

(2) \((q1I) \circ (q2I) = q3I \), where \(q3 \) is the unique element in \(Q \) such that \((q1q2)I \subseteq q3I \) (see [1]).

Proposition 1.4. (See [1]) Every Q-strong co-ideal \(I \) of a semiring \(R \) is subtractive.

Lemma 1.5. (See [5]) If \(D \) is a maximal co-ideal of a semiring \(R \), then \(R - D \) is an ideal.
2 Co-Homomorphism of semirings

We begin with the key definition of this paper.

Definition 2.1. Let R and R' be two semirings. The map $\phi : R \rightarrow R'$ is called co-homomorphism if satisfies the following conditions:

1. $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in R$.
2. $\phi(a + b) = \phi(a) + \phi(b)$ for all $a, b \in R$.
3. $\phi(0) = 0$.
4. $\phi(1) = 1$.
5. If $\phi(r) = 1$ for some $r \in R$, then $\phi(a + r) = 1$ for all $a \in R$.

One can easily see that every co-homomorphism is a semiring homomorphism.

The following example shows that a homomorphism need not be a co-homomorphism.

Example 2.2. Let $\mathbb{Z}^+ \cup \{0\}$ be the semiring of positive integers with the usual addition and multiplication and i be the identity homomorphism of semiring $\mathbb{Z}^+ \cup \{0\}$. It is clear that $i(1) = 1$ and $i(r + 1) \neq 1$ for each $r \in \mathbb{Z}^+ \cup \{0\}$. So i is not a co-homomorphism.

Proposition 2.3. Let D be a co-ideal of a semiring R such that $R - D$ is an ideal of R. Then D is a subtractive strong co-ideal of R.

Proof. Let $xy \in D$ and $x \in D$ for some $x, y \in R$. If $y \notin D$, then $y \in R - D$. By hypothesis, $R - D$ is an ideal of R, therefore $xy \in R - D$, a contradiction. Thus D is a subtractive co-ideal of R. Clearly, $1 \in D$ since D is a subtractive co-ideal.

The converse of Proposition 2.3 is not true, as the following example shows.

Example 2.4. Let $X = \{a, b, c\}$. Then $R = (P(X), \cup, \cap)$ is a semiring, where $P(X)$ is the set of all subsets of X. An inspection will show that $I = \{X, \{a, b\}\}$ is a Q-strong co-ideal of R, where $Q = \{\{c\}, \{a, c\}, \{b, c\}, X\}$. Thus I is a subtractive co-ideal of R by Proposition 1.4. It can be seen $R - I$ is not an ideal of R, because $\{a\}, \{b\} \in R - I$ and $\{a\} \cup \{b\} = \{a, b\} \notin R - I$.

Proposition 2.5. If D is a maximal co-ideal of R, then D is subtractive.

Proof. Apply Lemma 1.5 and Proposition 2.3.

The following example shows that the converse of Proposition 2.5 is not true.

Example 2.6. Let R be the set of all non-negative integers. Define $a + b = \gcd(a, b)$ and $a \times b = \operatorname{lcm}(a, b)$ (take $0 + 0 = 0$ and $0 \times 0 = 0$). Then $(R, +, \times)$ is easily checked to be a commutative semiring. Let I be the set of all non-negative odd integers, then I is a co-ideal of R. An inspection shows that $R - I$ is an ideal of R. It can be seen I is not a maximal co-ideal of R, because $I \subsetneq R - \{0\}$ and $R - \{0\}$ is a maximal co-ideal of R.
Theorem 2.7. Let D be a co-ideal of R such that $R - D$ is an ideal of R. Then there exists a co-homomorphism from R onto B.

Proof. Let $\phi : R \to B$ with

$$
\phi(x) = \begin{cases}
0 & \text{if } x \notin D, \\
1 & \text{if } x \in D
\end{cases}
$$

We will show that ϕ is a co-homomorphism.

1. $\phi(a + b) = \phi(a) + \phi(b)$ for all $a, b \in R$. We consider the various possibilities for a, b.

 Case 1: $a, b \in D$. Since D is a co-ideal, $a + b \in D$. So $\phi(a + b) = 1$. Also $\phi(a) + \phi(b) = 1 + 1 = 1$. Thus $\phi(a + b) = \phi(a) + \phi(b)$.

 Case 2: $a \notin D$ and $b \notin D$. Since $I = R - D$ is an ideal of R and $a, b \in I$, $a + b \in I$ and so $a + b \notin D$. It is clear that $\phi(a + b) = \phi(a) + \phi(b) = 0$.

 Case 3: $(a \in D, b \notin D)$ or $(a \notin D, b \in D)$. In these two, we have $a + b \in D$. So $1 = \phi(a + b) = \phi(a) + \phi(b) = 1 + 0 = 1$.

2. $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in R$. We consider the various possibilities for a, b.

 Case 1: $a, b \in D$. Since D is a co-ideal, $ab \in D$, and so $\phi(ab) = 1$. Since $a, b \in D$, $\phi(a) = 1$ and $\phi(b) = 1$. Therefore $\phi(ab) = \phi(a)\phi(b)$.

 Case 2: $a \notin D$ and $b \notin D$. Since $I = R - D$ is an ideal of R, $ab \in I$ and so $ab \notin D$. Thus $\phi(ab) = 0$. Therefore $0 = \phi(ab) = \phi(a)\phi(b)$.

 Case 3: $(a \in D, b \notin D)$ or $(a \notin D, b \in D)$. Since $R - D$ is an ideal, D is a subtractive co-ideal by Proposition 2.3. Therefore $ab \notin D$. So $0 = \phi(ab) = \phi(a)\phi(b)$.

3. $\phi(1) = 1$ is clear, since $1 \in D$.

4. $\phi(0) = 0$ is clear, since $0 \notin D$.

5. If $\phi(r) = 1$, then $r \in D$. Hence $a + r \in D$ for each $a \in R$. Thus $\phi(a + r) = 1$.

It is clear that ϕ is onto.

\[
\text{Def. 2.8. Let } R \text{ and } R' \text{ be two semirings and } \phi : R \to R' \text{ be a co-homomorphism. Set } co - Ker(\phi) = \{ r \in R : \phi(r) = 1 \}.
\]

Remark 2.9. It is clear that $co - Ker(\phi)$ is a strong co-ideal of R and in Theorem 2.7, $co - Ker(\phi) = \{ x \in R : \phi(x) = 1 \} = D$.

\[
\text{Def. 2.10. A co-homomorphism } \phi \text{ with } co - Ker(\phi) = K \text{ from a semiring } R \text{ onto the semiring } R' \text{ is said to be maximal if for each } a \in R' \text{ there exists } g_a \in \phi^{-1}(\{a\}) \text{ such that } xK \subseteq g_aK \text{ for each } x \in \phi^{-1}(\{a\}).
\]
Example 2.11. Let \(R = \mathbb{Z}^+ \cup \{0\} \) be the semiring of positive integers and \(\phi : R \to B \) with
\[
\phi(x) = \begin{cases}
0 & \text{if } x = 0, \\
1 & \text{if } x \in R - \{0\}.
\end{cases}
\]

It can be checked that \(\phi \) is a co-homomorphism. Put \(q_1 = 1 \) and \(q_0 = 0 \). Then for each \(x \in R - \{0\} \), we have \(x(co - Ker(\phi)) \subseteq q_1(co - Ker(\phi)) \) and for \(x = 0, x(co - Ker(\phi)) \subseteq q_0(co - Ker(\phi)) \). Therefore \(\phi \) is a maximal co-homomorphism.

Proposition 2.12. Let \(R \) be a semiring and \(I \) be a \(Q \)-strong co-ideal of \(R \). If \(\phi : R \to R/I \) with \(\phi(a) = qI \), where \(q \) is the unique element of \(Q \) such that \(a \in qI \), then \(\phi \) is a maximal co-homomorphism.

Proof. We prove the proposition in six steps.

(1) \(\phi(ab) = \phi(a) \circ \phi(b) \) for all \(a, b \in R \). Let \(q_1, q_2, q \) be elements of \(Q \) such that \(ab \in qI, a \in q_1I \) and \(b \in q_2I \). Hence \(\phi(a) = q_1I, \phi(b) = q_2I \) and \(\phi(ab) = qI \). Let \(q' \in Q \) such that \(q_1q_2I \subseteq q'I \) then \(\phi(a) \circ \phi(b) = q_1I \circ q_2I = q'I \). We will show that \(q = q' \). Since \(ab = q_1q_2I \subseteq q_1q_2I \subseteq q'I \), \(ab \in (q'I) \cap (qI) \) and so \(q = q' \). Therefore \(\phi(ab) = \phi(a) \circ \phi(b) \).

(2) \(\phi(a + b) = \phi(a) \oplus \phi(b) \), for all \(a, b \in R \). Let \(q \in I \) such that \(a + b \in qI \), then \(\phi(a + b) = qI \). Let \(q_1 \in Q \) and \(q_2 \in Q \) such that \(a \in q_1I \) and \(b \in q_2I \), then \(\phi(a) = q_1I \) and \(\phi(b) = q_2I \). Let \(q' \in Q \) such that \(q_1I + q_2I \subseteq q'I \), then \(\phi(a) \oplus \phi(b) = q_1I \oplus q_2I = q'I \). Since \(a + b \in q_1I + q_2I \), \(a + b \in q'I \) and hence \(a + b \in (q'I) \cap (qI) \). Therefore \(q = q' \) and so \(\phi(a + b) = \phi(a) \oplus \phi(b) \).

(3) \(\phi(0) = 0 \). Let \(q_0 \in Q \) be unique element such that \(0 \in q_0I \). Therefore \(\phi(0) = q_0I \) where \(q_0I \) is zero element of \(R/I \).

(4) \(\phi(1) = 1 \) is clear.

(5) Let \(\phi(r) = q_rI = I \) where \(q_rI \) is the identity element of \(R/I \), then by definition of \(\phi \), \(r \in I \). Thus for each \(a \in R \), \(a + r \in I \) (since \(I \) is a co-ideal), and hence \(\phi(a + r) = I \) as desired.

(6) It is clear that \(co - Ker(\phi) = I \). Since \(I \) is a \(Q \)-strong co-ideal, for each \(qI \in R/I \) and \(x \in \phi^{-1}(qI), xI \subseteq qI \). Thus \(\phi \) is a maximal co-homomorphism.

Lemma 2.13. Let \(\phi \) be a co-homomorphism from the semiring \(R \) onto semiring \(R' \). If \(\phi \) is maximal, then \(co - Ker(\phi) = K \) is a \(Q \)-strong co-ideal of \(R \).

Proof. As \(\phi \) is a maximal co-homomorphism, for each \(a \in R' \) there exists \(q_a \in \phi^{-1}(\{a\}) \) such that \(xK \subseteq q_aK \) for each \(x \in \phi^{-1}(\{a\}) \). First, we show that \(R = \cup \{q_aK : a \in R'\} \). Let \(r \in R \), then \(\phi(r) \in R' \). Let \(\phi(r) = b \). Then \(r \in \phi^{-1}(...}
Lemma 2.14. Let R, R', ϕ and Q be as stated in Lemma 2.13 and let q_a, q_b and q_c be elements in Q and $K = co - Ker(\phi)$.

(1) If $(q_aK + q_bK) \subseteq q_cK$, then $a + b = c$.

(2) If $q_aq_bK \subseteq q_cK$, then $ab = c$.

Proof. (1) Since $q_a + q_b \in (q_aK + q_bK) \subseteq q_cK$, there exists $k \in K$ such that $q_a + q_b = q_c$. Thus $a + b = \phi(q_a) + \phi(q_b) = \phi(q_a + q_b) = \phi(q_c) = \phi(q_c)\phi(k) = c$.

(2) It can be proved by a similar way as in (1).

Theorem 2.15. If ϕ is a co-homomorphism from the semiring R onto R' that is maximal, then $R/\text{co} - \text{Ker}(\phi) \cong R'$.

Proof. Let $co - \text{Ker}(\phi) = K$. By Lemma 2.13, K is a Q-strong co-ideal and $R = \cup\{q_aK : a \in R'\}$. Let $\hat{\phi} : R/K \rightarrow R'$ with $\hat{\phi}(q_aK) = a$ (for each $x \in \phi^{-1}\{a\}, xK \subseteq q_aK$). Let $q_aK = q_bK$. Since K is a Q-strong co-ideal, $q_a = q_b$. So $a = \phi(q_a) = \phi(q_b) = b$. Thus $\hat{\phi}$ is well-defined. Now we show $\hat{\phi}$ is a isomorphism.

(1) $\tilde{\phi}(q_aK \cap q_bK) = \tilde{\phi}(q_aK)\tilde{\phi}(q_bK)$. Let $q_c \in Q$ such that $q_aq_bK \subseteq q_cK$. Then $q_aK \subseteq q_cK$. By Lemma 2.14, $ab = c$ and so $\tilde{\phi}(q_aK \cap q_bK) = \tilde{\phi}(q_cK)\tilde{\phi}((q_aK))$.

(2) $\tilde{\phi}(q_aK \oplus q_bK) = \tilde{\phi}(q_aK)\tilde{\phi}(q_bK)$. Let $q_c \in Q$ such that $q_aK \oplus q_bK \subseteq q_cK$, then $q_aK \oplus q_bK \subseteq q_cK$. By Lemma 2.14, $a + b = c$. Thus $\tilde{\phi}(q_aK \oplus q_bK) = \tilde{\phi}(q_cK)\tilde{\phi}(q_aK)\tilde{\phi}(q_bK)$.

(3) $\tilde{\phi}$ is monomorphism. Let $\tilde{\phi}(q_aK) = \tilde{\phi}(q_cK)$. Hence $a = b$. Since for each $x \in \phi^{-1}\{a\}, xK \subseteq q_bK$, we have $q_aK \subseteq q_bK$. Similarly $q_bK \subseteq q_aK$. Hence $q_aK = q_bK$.

(4) $\tilde{\phi}$ is epimorphism. Let $a \in R'$. Since ϕ is epic, $\phi^{-1}\{a\} \neq \emptyset$. Since ϕ is maximal, there exists $q_a \in Q$ such that $q_a \in \phi^{-1}\{a\}$ and for each $x \in \phi^{-1}\{a\}$, $xK \subseteq q_aK$. Thus $\tilde{\phi}(q_aK) = a$. Thus $\tilde{\phi}$ is epic.

Acknowledgement: We would like to thank the referees for valuable comments.

References

(Received 19 November 2012)
(Accepted 17 July 2013)