Thai Journal of Mathematics Special Issue (Annual Meeting in Mathematics, 2006) : 1–5

Certain Regular Semigroups of Infinite Matrices

S. Pianskool, P. Lertwichitsilp and K. Savettaraseranee

Abstract: Let F be a field and \mathbb{N} the set of natural numbers. It is known that the multiplicative semigroup of all bounded $\mathbb{N} \times \mathbb{N}$ matrices over F is a regular semigroup. Our purpose is to consider the multiplicative semigroup $U^*(F)$ of all column bounded upper triangular $\mathbb{N} \times \mathbb{N}$ matrices A over F with for some $k \in \mathbb{N}$, $A_{ii} \neq 0$ for $i \in \{1, \ldots, k\}$ and $A_{ij} = 0$ for i > k and all $j \in \mathbb{N}$. In this paper, we show that $U^*(F)$ is a regular semigroup which is a disjoint union of right simple regular semigroups, and its idempotents are also determined.

Keywords : Infinite matrix, regular semigroup 2000 Mathematics Subject Classification : 20M17, 20M99

1 Introduction

An *idempotent* of a semigroup S is an element $a \in S$ with $a^2 = a$. The set of all idempotents of S is denoted by E(S). A semigroup S is called a *regular semigroup* if for every $x \in S$, x = xyx for some $y \in S$, and S is called an *inverse semigroup* if for every $x \in S$, there is a unique element $x^{-1} \in S$ such that $x = xx^{-1}x$ and $x^{-1} = x^{-1}xx^{-1}$. It is well-known that a semigroup S is inverse if and only if Sis regular and any two idempotents commute with each other ([1], page 28). A semigroup S is called *right* [*left*] *simple* if S itself is the only right [*left*] ideal of S. It follows that S is right [*left*] simple if and only if aS = S [Sa = S] for all $a \in S$ ([1], page 7).

Let \mathbb{N} be the set of natural numbers (positive integers), $n \in \mathbb{N}$, F a field and $M_n(F)$ the multiplicative semigroup of all $n \times n$ matrices over F. It is wellknown that $M_n(F)$ is a regular semigroup ([3], page 114) with identity I_n , the identity $n \times n$ matrix over F. Let $U_n(F)$ be the set of upper triangular matrices $A \in M_n(F)$. Then $U_n(F)$ is a subsemigroup of $M_n(F)$ but it is clearly seen that $U_n(F)$ is not regular if n > 1. For $i, j \in \{1, \ldots, n\}$, the (i, j)-entry of $A \in M_n(F)$ is denoted by A_{ij} . Let

$$\widetilde{U}(F) = \{A \in U_n(F) \mid A \text{ is invertible in } M_n(F)\}.$$

Then

$$U(F) = \{A \in U_n(F) \mid A_{ii} \neq 0 \text{ for all } i \in \{1, \dots, n\}\}$$

which is a subgroup of $U_n(F)$ ([2], page 410).

By an $\mathbb{N} \times \mathbb{N}$ matrix over F we mean an infinite matrix over F of the form

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots \\ a_{21} & a_{22} & a_{23} & \dots \\ a_{31} & a_{32} & a_{33} & \dots \\ & \vdots & & \end{bmatrix}.$$

For an $\mathbb{N} \times \mathbb{N}$ matrix A over F, its (i, j)-entry is also denoted by A_{ij} . Upper triangular $\mathbb{N} \times \mathbb{N}$ matrices over F are defined naturally. Following [4], an $\mathbb{N} \times \mathbb{N}$ matrix A over F is called *column* [row] bounded if there is a positive integer Nsuch that $A_{ij} = 0$ if i > N [j > N], and A is called *bounded* if A is both column bounded and row bounded. Hence a column [row] bounded $\mathbb{N} \times \mathbb{N}$ matrix over Fis an $\mathbb{N} \times \mathbb{N}$ matrix over F with only finitely many nonzero rows [columns]. Let BM(F) be the multiplicative semigroup of all bounded $\mathbb{N} \times \mathbb{N}$ matrices over F. It follows from [4] that BM(F) is also a regular semigroup. For $k \in \mathbb{N}$, let I(k) be an $\mathbb{N} \times \mathbb{N}$ matrix over F defined by

$$I_{ij}(k) = \begin{cases} 1 & \text{if } i = j \in \{1, \dots, k\}, \\ 0 & \text{otherwise.} \end{cases}$$

Then I(k)I(l) = I(k) if $k \leq l$. Let $U^*(F)$ be the set of all column bounded upper triangular $\mathbb{N} \times \mathbb{N}$ matrices A over F of the form

$$A = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1k} & A_{1,k+1} & \dots \\ 0 & A_{22} & \dots & A_{2k} & A_{2,k+1} & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & A_{kk} & A_{k,k+1} & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots \\ & & & \vdots & & \\ \end{bmatrix} \quad \text{where } A_{ii} \neq 0 \text{ for} \\ i \in \{1, \dots, k\}.$$
(1.1)

Then $I(k) \in U^*(F)$ for all $k \in \mathbb{N}$. It is clearly seen that $U^*(F)$ is a semigroup under matrix multiplication. If $A \in U^*(F)$ and $k \in \mathbb{N}$ are such that $A_{ii} \neq 0$ for all $i \in \{1, \ldots, k\}$ and $A_{ij} = 0$ for i > k and $j \in \mathbb{N}$ (see (1)), then

$$I(k)A = A$$

and

$$AI(k) = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1k} & 0 & 0 & \dots \\ 0 & A_{22} & \dots & A_{2k} & 0 & 0 & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & A_{kk} & 0 & 0 & \dots \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots \\ \dots & \vdots & \dots & \vdots & \dots \end{bmatrix}.$$
 (1.2)

2

Notice that BM(F) and $U^*(F)$ are not subsets of each other and both are semigroups without identity.

The purpose of this paper is to prove the following facts.

- (i) $U^*(F)$ is a regular semigroup which is a disjoint union of right simple regular semigroups.
- (ii) $E(U^*(F))$ consists of all $A \in U^*(F)$ with

$$A = \begin{bmatrix} 1 & 0 & \dots & 0 & A_{1,k+1} & \dots \\ 0 & 1 & \dots & 0 & A_{2,k+1} & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 & A_{k,k+1} & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots \\ & & & \vdots & & & \end{bmatrix}$$
(1.3)

where $k \in \mathbb{N}$.

2 Main Results

To prove (i) of our purpose, the following lemma is needed.

Lemma 2.1. Let $k \in \mathbb{N}$ and let S_k consist of all $A \in U^*(F)$ with

$$A = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1k} & A_{1,k+1} & \dots \\ 0 & A_{22} & \dots & A_{2k} & A_{2,k+1} & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & A_{kk} & A_{k,k+1} & \dots \\ 0 & 0 & \dots & 0 & 0 & \dots \\ & & & \vdots & & \end{bmatrix} \quad where \ A_{ii} \neq 0 \ for \\ i \in \{1, \dots, k\}.$$
(2.1)

Then S_k is a right simple regular subsemigroup of $U^*(F)$.

Proof. It is clear that S_k is a subsemigroup of $U^*(F)$. Let $A \in S_k$ and define $\widetilde{A} \in \widetilde{U}(F)$ by $\widetilde{A}_{ij} = A_{ij}$ for all $i, j \in \{1, \ldots, k\}$. Since $\widetilde{U}(F)$ is a group with identity I_k , it follows that $\widetilde{A}B = I_k$ for some $B \in \widetilde{U}(F)$. Define $B^* \in S_k$ by

$$B_{ij}^* = \begin{cases} B_{ij} & \text{if } i, j \in \{1, \dots, k\} \\ 0 & \text{otherwise.} \end{cases}$$

Then $AB^* = I(k)$. Consequently,

$$AB^*A = I(k)A = A$$

and

$$S_k \supseteq AS_k \supseteq A(B^*S_k) = (AB^*)S_k = I(k)S_k = S_k,$$

so $AS_k = S_k$.

This proves that S_k is regular and right simple.

Theorem 2.2. Th semigroup $U^*(F)$ is a regular semigroup which is a disjoint union of right simple regular semigroups.

Proof. For each $k \in \mathbb{N}$, define S_k as in Lemma 2.1. By Lemma 2.1, S_k is a regular right simple semigroup. It is clear that

$$U^*(F) = \bigcup_{k \in \mathbb{N}} S_k$$
 and $S_k \cap S_l = \emptyset$ if $k \neq l$.

Hence $U^*(F)$ is a regular semigroup, so the theorem is proved.

Remark 2.3. It is clearly seen that for every $N \in \mathbb{N}$, $\bigcup_{k=1}^{N} S_k$ is a right ideal of $U^*(F)$. It follows that $U^*(F)$ contains infinitely many right ideals.

Theorem 2.4. Let $A \in U^*(F)$ be written as in (2.1), $A \in E(U^*(F))$ if and only if

$$A_{ij} = \begin{cases} 1 & if \ i = j \in \{1, \dots, k\}, \\ 0 & if \ i, j \in \{1, \dots, k\} \text{ with } i \neq j, \end{cases}$$

that is, A is written as in (1.3).

Proof. Assume that $A \in E(U^*(F))$. Then AA = A. Define $\widetilde{A} \in \widetilde{U}(F)$ as in the proof of Lemma 2.1 and let $B \in \widetilde{U}(F)$ be such that $\widetilde{A}B = I_k$. Also, define $B^* \in U^*(F)$ as in the proof of Lemma 2.1. Then

$$I(k) = AB^* = AAB^* = AI(k) = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1k} & 0 & 0 & \dots \\ 0 & A_{22} & \dots & A_{2k} & 0 & 0 & \dots \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & A_{kk} & 0 & 0 & \dots \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots \\ \dots & \dots & \vdots & \dots & \dots \end{bmatrix}$$

which implies that

$$A_{ij} = \begin{cases} 1 & \text{if } i = j \in \{1, \dots, k\}, \\ 0 & \text{if } i, j \in \{1, \dots, k\} \text{ with } i \neq j. \end{cases}$$

By direct multiplication, the converse holds.

Corollary 2.5. The semigroup $U^*(F)$ is not an inverse semigroup.

Proof. Recall that any two idempotents of an inverse semigroup commute. To prove the corollary, it suffices to show that there are $A, B \in E(U^*(F))$ such that $AB \neq BA$. Let

$$A = I(1) \quad \text{and} \quad B = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots \\ 0 & 0 & 0 & 0 & \dots \\ & \vdots & & & \end{bmatrix}.$$

By Theorem 2.4, $A, B \in E(U^*(F))$. Since AB = I(1)B = B and BA = BI(1) = I(1), we have $AB \neq BA$.

We give a note that the duals of the given results are obtained when we consider the multiplicative semigroup $L^*(F)$ of all row bounded lower triangular $\mathbb{N} \times \mathbb{N}$ matrices A over F with for some $k \in \mathbb{N}$, $A_{jj} \neq 0$ for $j \in \{1, \ldots, k\}$ and $A_{ij} = 0$ for j > k and all $i \in \mathbb{N}$.

References

- A. H. Clifford and G. B. Preston, *The Algebraic Theory of Semigroup*, Vol. I, Amer. Math. Soc., Providence, R. I, 1961.
- [2] P. Horst, *Matrix Algebra for Social Scientists*, Holt, Rinchart and Winston, Inc., New York, 1963.
- [3] I. Kaplansky, *Fields and Rings*, Chicago lecture in Mathematics, The University of Chicago Press, 1969.
- [4] F. Li, Regularity of semigroup rings, Semigroup Forum 53(1996), 72–81.

(Received 25 May 2006)

S. Pianskool Department of Mathematics Faculty of Science Chulalongkorn University Bangkok 10330, THAILAND. e-mail: Sajee.P@Chula.ac.th

P. Lertwichitsilp and K. Savettaraseranee Department of Mathematics Faculty of Science Kasetsart University Bangkok 10900, THAILAND.