Certain Regular Semigroups of Infinite Matrices

S. Pianskool, P. Lertwichitsilp and K. Savettaraseranee

Abstract

Let F be a field and \mathbb{N} the set of natural numbers. It is known that the multiplicative semigroup of all bounded $\mathbb{N} \times \mathbb{N}$ matrices over F is a regular semigroup. Our purpose is to consider the multiplicative semigroup $U^{*}(F)$ of all column bounded upper triangular $\mathbb{N} \times \mathbb{N}$ matrices A over F with for some $k \in \mathbb{N}$, $A_{i i} \neq 0$ for $i \in\{1, \ldots, k\}$ and $A_{i j}=0$ for $i>k$ and all $j \in \mathbb{N}$. In this paper, we show that $U^{*}(F)$ is a regular semigroup which is a disjoint union of right simple regular semigroups, and its idempotents are also determined.

Keywords : Infinite matrix, regular semigroup
2000 Mathematics Subject Classification : 20M17, 20M99

1 Introduction

An idempotent of a semigroup S is an element $a \in S$ with $a^{2}=a$. The set of all idempotents of S is denoted by $E(S)$. A semigroup S is called a regular semigroup if for every $x \in S, x=x y x$ for some $y \in S$, and S is called an inverse semigroup if for every $x \in S$, there is a unique element $x^{-1} \in S$ such that $x=x x^{-1} x$ and $x^{-1}=x^{-1} x x^{-1}$. It is well-known that a semigroup S is inverse if and only if S is regular and any two idempotents commute with each other ([1], page 28). A semigroup S is called right [left] simple if S itself is the only right [left] ideal of S. It follows that S is right [left] simple if and only if $a S=S[S a=S]$ for all $a \in S$ ([1], page 7).

Let \mathbb{N} be the set of natural numbers (positive integers), $n \in \mathbb{N}, F$ a field and $M_{n}(F)$ the multiplicative semigroup of all $n \times n$ matrices over F. It is wellknown that $M_{n}(F)$ is a regular semigroup ([3], page 114) with identity I_{n}, the identity $n \times n$ matrix over F. Let $U_{n}(F)$ be the set of upper triangular matrices $A \in M_{n}(F)$. Then $U_{n}(F)$ is a subsemigroup of $M_{n}(F)$ but it is clearly seen that $U_{n}(F)$ is not regular if $n>1$. For $i, j \in\{1, \ldots, n\}$, the (i, j)-entry of $A \in M_{n}(F)$ is denoted by $A_{i j}$. Let

$$
\widetilde{U}(F)=\left\{A \in U_{n}(F) \mid A \text { is invertible in } M_{n}(F)\right\} .
$$

Then

$$
\widetilde{U}(F)=\left\{A \in U_{n}(F) \mid A_{i i} \neq 0 \text { for all } i \in\{1, \ldots, n\}\right\}
$$

which is a subgroup of $U_{n}(F)([2]$, page 410).
By an $\mathbb{N} \times \mathbb{N}$ matrix over F we mean an infinite matrix over F of the form

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & a_{22} & a_{23} & \ldots \\
a_{31} & a_{32} & a_{33} & \ldots \\
& \vdots & &
\end{array}\right]
$$

For an $\mathbb{N} \times \mathbb{N}$ matrix A over F, its (i, j)-entry is also denoted by $A_{i j}$. Upper triangular $\mathbb{N} \times \mathbb{N}$ matrices over F are defined naturally. Following [4], an $\mathbb{N} \times \mathbb{N}$ matrix A over F is called column [row] bounded if there is a positive integer N such that $A_{i j}=0$ if $i>N[j>N]$, and A is called bounded if A is both column bounded and row bounded. Hence a column [row] bounded $\mathbb{N} \times \mathbb{N}$ matrix over F is an $\mathbb{N} \times \mathbb{N}$ matrix over F with only finitely many nonzero rows [columns]. Let $B M(F)$ be the multiplicative semigroup of all bounded $\mathbb{N} \times \mathbb{N}$ matrices over F. It follows from [4] that $B M(F)$ is also a regular semigroup. For $k \in \mathbb{N}$, let $I(k)$ be an $\mathbb{N} \times \mathbb{N}$ matrix over F defined by

$$
I_{i j}(k)= \begin{cases}1 & \text { if } i=j \in\{1, \ldots, k\} \\ 0 & \text { otherwise }\end{cases}
$$

Then $I(k) I(l)=I(k)$ if $k \leq l$. Let $U^{*}(F)$ be the set of all column bounded upper triangular $\mathbb{N} \times \mathbb{N}$ matrices A over F of the form

$$
A=\left[\begin{array}{cccccc}
A_{11} & A_{12} & \ldots & A_{1 k} & A_{1, k+1} & \ldots \tag{1.1}\\
0 & A_{22} & \ldots & A_{2 k} & A_{2, k+1} & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & A_{k k} & A_{k, k+1} & \ldots \\
0 & 0 & \ldots & 0 & 0 & \ldots \\
& & & \vdots & &
\end{array}\right] \quad \text { where } A_{i i} \neq 0 \text { for } \quad i \in\{1, \ldots, k\} .
$$

Then $I(k) \in U^{*}(F)$ for all $k \in \mathbb{N}$. It is clearly seen that $U^{*}(F)$ is a semigroup under matrix multiplication. If $A \in U^{*}(F)$ and $k \in \mathbb{N}$ are such that $A_{i i} \neq 0$ for all $i \in\{1, \ldots, k\}$ and $A_{i j}=0$ for $i>k$ and $j \in \mathbb{N}$ (see (1)), then

$$
I(k) A=A
$$

and

$$
A I(k)=\left[\begin{array}{ccccccc}
A_{11} & A_{12} & \ldots & A_{1 k} & 0 & 0 & \ldots \tag{1.2}\\
0 & A_{22} & \ldots & A_{2 k} & 0 & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & A_{k k} & 0 & 0 & \ldots \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots \\
& & & \vdots & & &
\end{array}\right]
$$

Notice that $B M(F)$ and $U^{*}(F)$ are not subsets of each other and both are semigroups without identity.

The purpose of this paper is to prove the following facts.
(i) $U^{*}(F)$ is a regular semigroup which is a disjoint union of right simple regular semigroups.
(ii) $E\left(U^{*}(F)\right)$ consists of all $A \in U^{*}(F)$ with

$$
A=\left[\begin{array}{cccccc}
1 & 0 & \ldots & 0 & A_{1, k+1} & \ldots \tag{1.3}\\
0 & 1 & \ldots & 0 & A_{2, k+1} & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1 & A_{k, k+1} & \ldots \\
0 & 0 & \ldots & 0 & 0 & \ldots \\
& & & \vdots & &
\end{array}\right]
$$

where $k \in \mathbb{N}$.

2 Main Results

To prove (i) of our purpose, the following lemma is needed.
Lemma 2.1. Let $k \in \mathbb{N}$ and let S_{k} consist of all $A \in U^{*}(F)$ with

$$
A=\left[\begin{array}{cccccc}
A_{11} & A_{12} & \ldots & A_{1 k} & A_{1, k+1} & \ldots \tag{2.1}\\
0 & A_{22} & \ldots & A_{2 k} & A_{2, k+1} & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & A_{k k} & A_{k, k+1} & \ldots \\
0 & 0 & \ldots & 0 & 0 & \ldots \\
& & & \vdots & &
\end{array}\right] \quad \text { where } A_{i i} \neq 0 \text { for } \quad i \in\{1, \ldots, k\} .
$$

Then S_{k} is a right simple regular subsemigroup of $U^{*}(F)$.
Proof. It is clear that S_{k} is a subsemigroup of $U^{*}(F)$. Let $A \in S_{k}$ and define $\widetilde{A} \in \widetilde{U}(F)$ by $\widetilde{A}_{i j}=A_{i j}$ for all $i, j \in\{1, \ldots, k\}$. Since $\widetilde{U}(F)$ is a group with identity I_{k}, it follows that $\widetilde{A} B=I_{k}$ for some $B \in \widetilde{U}(F)$. Define $B^{*} \in S_{k}$ by

$$
B_{i j}^{*}= \begin{cases}B_{i j} & \text { if } i, j \in\{1, \ldots, k\} \\ 0 & \text { otherwise }\end{cases}
$$

Then $A B^{*}=I(k)$. Consequently,

$$
A B^{*} A=I(k) A=A
$$

and

$$
S_{k} \supseteq A S_{k} \supseteq A\left(B^{*} S_{k}\right)=\left(A B^{*}\right) S_{k}=I(k) S_{k}=S_{k}
$$

so $A S_{k}=S_{k}$.
This proves that S_{k} is regular and right simple.

Theorem 2.2. Th semigroup $U^{*}(F)$ is a regular semigroup which is a disjoint union of right simple regular semigroups.

Proof. For each $k \in \mathbb{N}$, define S_{k} as in Lemma 2.1. By Lemma 2.1, S_{k} is a regular right simple semigroup. It is clear that

$$
U^{*}(F)=\bigcup_{k \in \mathbb{N}} S_{k} \quad \text { and } \quad S_{k} \cap S_{l}=\emptyset \quad \text { if } k \neq l
$$

Hence $U^{*}(F)$ is a regular semigroup, so the theorem is proved.

Remark 2.3. It is clearly seen that for every $N \in \mathbb{N}, \bigcup_{k=1}^{N} S_{k}$ is a right ideal of $U^{*}(F)$. It follows that $U^{*}(F)$ contains infinitely many right ideals.

Theorem 2.4. Let $A \in U^{*}(F)$ be written as in (2.1), $A \in E\left(U^{*}(F)\right)$ if and only if

$$
A_{i j}= \begin{cases}1 & \text { if } i=j \in\{1, \ldots, k\} \\ 0 & \text { if } i, j \in\{1, \ldots, k\} \text { with } i \neq j\end{cases}
$$

that is, A is written as in (1.3).
Proof. Assume that $A \in E\left(U^{*}(F)\right)$. Then $A A=A$. Define $\widetilde{A} \in \widetilde{U}(F)$ as in the proof of Lemma 2.1 and let $B \in \widetilde{U}(F)$ be such that $\widetilde{A} B=I_{k}$. Also, define $B^{*} \in U^{*}(F)$ as in the proof of Lemma 2.1. Then

$$
I(k)=A B^{*}=A A B^{*}=A I(k)=\left[\begin{array}{ccccccc}
A_{11} & A_{12} & \ldots & A_{1 k} & 0 & 0 & \ldots \\
0 & A_{22} & \ldots & A_{2 k} & 0 & 0 & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & A_{k k} & 0 & 0 & \ldots \\
0 & 0 & \ldots & 0 & 0 & 0 & \ldots \\
& & & \vdots & & &
\end{array}\right]
$$

which implies that

$$
A_{i j}= \begin{cases}1 & \text { if } i=j \in\{1, \ldots, k\} \\ 0 & \text { if } i, j \in\{1, \ldots, k\} \text { with } i \neq j\end{cases}
$$

By direct multiplication, the converse holds.

Corollary 2.5. The semigroup $U^{*}(F)$ is not an inverse semigroup.

Proof. Recall that any two idempotents of an inverse semigroup commute. To prove the corollary, it suffices to show that there are $A, B \in E\left(U^{*}(F)\right)$ such that $A B \neq B A$. Let

$$
A=I(1) \quad \text { and } \quad B=\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & \ldots \\
0 & 0 & 0 & 0 & \ldots \\
& & \vdots & &
\end{array}\right]
$$

By Theorem 2.4, $A, B \in E\left(U^{*}(F)\right)$. Since $A B=I(1) B=B$ and $B A=B I(1)=$ $I(1)$, we have $A B \neq B A$.

We give a note that the duals of the given results are obtained when we consider the multiplicative semigroup $L^{*}(F)$ of all row bounded lower triangular $\mathbb{N} \times \mathbb{N}$ matrices A over F with for some $k \in \mathbb{N}, A_{j j} \neq 0$ for $j \in\{1, \ldots, k\}$ and $A_{i j}=0$ for $j>k$ and all $i \in \mathbb{N}$.

References

[1] A. H. Clifford and G. B. Preston, The Algebraic Theory of Semigroup, Vol. I, Amer. Math. Soc., Providence, R. I, 1961.
[2] P. Horst, Matrix Algebra for Social Scientists, Holt, Rinchart and Winston, Inc., New York, 1963.
[3] I. Kaplansky, Fields and Rings, Chicago lecture in Mathematics, The University of Chicago Press, 1969.
[4] F. Li, Regularity of semigroup rings, Semigroup Forum 53(1996), 72-81.
(Received 25 May 2006)
S. Pianskool

Department of Mathematics
Faculty of Science
Chulalongkorn University
Bangkok 10330, THAILAND.
e-mail: Sajee.P@Chula.ac.th
P. Lertwichitsilp and K. Savettaraseranee

Department of Mathematics
Faculty of Science
Kasetsart University
Bangkok 10900, THAILAND.

