Some Structural Properties of Vector Valued Orlicz Sequence Space

M. K. Özdemir and İ. Solak

Abstract : In this work, we introduce the vector valued sequence space $F(X_k, M, p, s)$ and study the closed subspace of it. We examine various algebraic and topological properties of this space and also investigate some inclusion relations on it.

Keywords : Orlicz function, Orlicz sequence space, vector valued sequence space, paranormed space.

2000 Mathematics Subject Classification : 46A45, 40D25, 46A35.

1 Introduction

Orlicz sequence spaces are one of the most natural generalizations of classical spaces ℓ_p, $p \geq 1$. They were first considered by W. Orlicz in 1936. Afterwards, J. Lindenstrauss and L. Tzafriri [4] used the idea of Orlicz function M to construct the sequence space ℓ_M of all sequences of scalars (x_n) such that

$$\sum_{k=1}^{\infty} M\left(\frac{|x_k|}{\rho}\right) < \infty \text{ for some } \rho > 0.$$

The space ℓ_M becomes a Banach space which is called an Orlicz sequence space. The space ℓ_M is closely related to the space ℓ_p which is an Orlicz sequence space with $M(x) = x^p$, $(1 \leq p < \infty)$. In the present note, we introduce and examine some properties of a sequence space defined by using Orlicz function M, which generalizes the well known Orlicz sequence space ℓ_M. Before introducing this sequence space, let us give some basic concepts:

An algebra X is a linear space together with an internal operation of multiplication of elements of X, such that $xy \in X$, $x(yz) = (xy)z$, $x(y+z) = xy + xz$, $(x+y)z = xz + yz$ and $\lambda(xy) = (\lambda x)y = x(\lambda y)$, for any scalar λ, and a normed algebra is an algebra which is normed, as a linear space, and in which $\|xy\| \leq \|x\|\|y\|$ for all x, y; [6].

Let F be a sequence space and x, y be the arbitrary elements of F. Then F is called a sequence algebra if it is closed under the multiplication defined by $xy = (x_k y_k)$. The space F is called normal or solid if $y = (y_k) \in F$ whenever
\[|y_k| \leq |x_k|, \quad k \in \mathbb{N}, \text{ for some } x = (x_k) \in F. \] If \(F \) is both normal and sequence algebra then it is called a normal sequence algebra. For example, \(w, \ell_\infty, c_0 \) and \(\ell_p \) \((0 < p < \infty)\) are normal sequence algebras. \(c \) is a sequence algebra but not normal.

A norm \(\|\cdot\| \) on a normal sequence space \(F \) is said to be absolutely monotone if \(x = (x_k), y = (y_k) \in F \) and \(|x_k| \leq |y_k| \) for all \(k \in \mathbb{N} \) implies \(\|x\| \leq \|y\| \), \([5] \). The norm
\[
\|x\|_\infty = \sup |x_k|
\]
over \(\ell_\infty \), \(c \), \(c_0 \) and the norm
\[
\|x\| = \left(\sum_{k=1}^{\infty} |x_k|^p \right)^{1/p}
\]
over \(\ell_p \) for \(p \geq 1 \) are absolutely monotone.

We recall [3, 4] that an Orlicz function is a function \(M : [0, \infty) \rightarrow [0, \infty) \) which is continuous, non-decreasing and convex with \(M(0) = 0 \), \(M(x) > 0 \) for all \(x > 0 \) and \(M(x) \rightarrow \infty \) as \(x \rightarrow \infty \). An Orlicz function \(M \) can always be represented in the following integral form:
\[
M(x) = \int_{0}^{x} p(t) \, dt,
\]
where \(p \), known as the kernel of \(M \).

We remark that \(M_1 + M_2 \) and \(M_1 \circ M_2 \) are Orlicz functions when \(M_1 \) and \(M_2 \) are Orlicz functions.

An Orlicz function \(M \) is said to satisfy the \(\Delta_2 \)-condition for all values of \(u \) if there exists a constant \(K > 0 \) such that \(M(2u) \leq KM(u) \), \(u \geq 0 \). It is easy to see always that \(K \geq 2 \). The \(\Delta_2 \)-condition is equivalent to the inequality \(M(\ell u) \leq K(\ell)M(u) \) which holds for all values of \(u \) and \(\ell > 1 \); \([3]\).

We now introduce the vector valued sequence space \(F(X_k, M, p, s) \) using Orlicz function \(M \).

Let \(X_k \) be seminormed space over the complex field \(\mathbb{C} \) with seminorm \(q_k \) for each \(k \in \mathbb{N} \), and \(F \) be a normal sequence algebra with absolutely monotone norm \(\|\cdot\|_F \) and having a Schauder basis \((e_k) \), where \(e_k = (0, \ldots, 0, 1, 0, \ldots) \), with 1 in \(k \)-th place. Let \(p = (p_k) \) be any sequence of strictly positive real numbers and \(s \) be any non-negative real number. By \(s(X_k) \), we denote the linear space of all sequences \(x = (x_k) \) with \(x_k \in X_k \) for each \(k \in \mathbb{N} \) under the usual coordinatewise operations:
\[
\alpha x = (\alpha x_k) \quad \text{and} \quad x + y = (x_k + y_k)
\]
for each \(\alpha \in \mathbb{C} \). Let \(x \in s(X_k) \) and \(\lambda = (\lambda_k) \) is a scalar sequence such that
Some Structural Properties of Vector Valued Orlicz Sequence Space

\(\lambda x = (\lambda_k x_k) \). We define for an Orlicz function \(M \),

\[
F(X_k, M, p, s) = \{ x = (x_k) \in s(X_k) : x_k \in X_k \text{ for each } k \text{ and } \\
\left(k^{-s} \left[M \left(\frac{q_k(x_k)}{\rho} \right) \right]^{p_k}\right) \in F \text{ for some } \rho > 0 \}.
\]

Y. Yılmaz, M. K. Özdemir and İ. Solak [8] introduced a generalization of Minkowski Inequality to normal sequence algebras with absolutely monotone seminorm. We will use Lemma 1 which states this extension to put forward a topology of the space \(F(X_k, M, p, s) \). For \(x = (x_k) \in F(X_k, M, p, s) \), we define

\[
g(x) = \inf \left\{ \rho^{\rho_n/H} > 0 : \left\| k^{-s} \left[M \left(\frac{q_k(x_k)}{\rho} \right) \right]^{p_k} \right\|_F^{1/H} \leq 1, n \in \mathbb{N} \right\}, \tag{1.1}
\]

where \(H = \max(1, \sup p_k) \). It is shown that \(F(X_k, M, p, s) \) turns out to be a complete paranormed space with the paranorm defined by (1.1) whenever the seminormed space \(X_k \) is complete under the seminorm \(q_k \) for each \(k \in \mathbb{N} \).

It can be seen that for suitable choice of the sequence space \(F \), the seminormed space \(X_k \), the sequence of strictly positive real numbers \((p_k) \), \(s \geq 0 \) and Orlicz function \(M \), the space \(F(X_k, M, p, s) \) reduces to the many number of known ordinary sequence spaces and as well as vector valued sequence spaces, as a particular case. For example, choosing \(F \) to be \(\ell_1 \), \(X_k = X \) (a vector space over \(\mathbb{C} \)) and \(q_k = q \) to be a seminorm on \(X \) in \(F(X_k, M, p, s) \) one gets the scalar valued sequence space \(\ell_M(p, q, s) \) defined by Ç. A. Bektaş & Y. Altın [1].

If \(X_k \) is normed space, \(p_k = 1 \) for each \(k \in \mathbb{N} \) and \(s = 0 \), then the class \(F(X_k, M, p, s) \) gives the class \(F(X_k, M) \) defined by D. Ghosh & P. D. Srivastava [2]. Furthermore, if \(F = \ell_1 \), \(X_k = \mathbb{C} \) and \(s = 0 \) in \(F(X_k, M, p, s) \), then one obtains the space \(\ell_M(p) \) defined by S. D. Parashar & B. Choudhary [7]. Thus, the generalized sequence space \(F(X_k, M, p, s) \) yields several spaces studied by several authors.

2 Linear Topological Structure of \(F(X_k, M, p, s) \)

Now, we examine some algebraic and topological properties of \(F(X_k, M, p, s) \) and investigate some inclusion relations on it. In order to discuss the properties of \(F(X_k, M, p, s) \), we assume that \((p_k) \) is bounded. We will henceforth denote by \(h \) and \(C \), the real numbers \(\sup p_k \) and \(\max (1, 2^{h-1}) \), respectively.

Theorem 2.1 \(F(X_k, M, p, s) \) is a linear space over the complex field \(\mathbb{C} \).

Proof. Let \(x = (x_k), y = (y_k) \in F(X_k, M, p, s) \) and \(\alpha, \beta \in \mathbb{C} \). So, there exist \(\rho_1, \rho_2 > 0 \) such that

\[
\left(k^{-s} \left[M \left(\frac{q_k(x_k)}{\rho_1} \right) \right]^{p_k} \right), \left(k^{-s} \left[M \left(\frac{q_k(y_k)}{\rho_2} \right) \right]^{p_k} \right) \in F.
\]
Let $\rho_3 = \max (2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since M is non-decreasing and convex,

$$k^{-s} \left[M \left(\frac{q_k (\alpha x_k + \beta y_k)}{\rho_3} \right) \right]^{p_k} \leq k^{-s} \left[M \left(\frac{|\alpha| q_k (x_k)}{\rho_3} + |\beta| q_k (y_k) \right) \right]^{p_k} \leq k^{-s} \left[M \left(\frac{q_k (x_k)}{\rho_1} \right) + M \left(\frac{q_k (y_k)}{\rho_2} \right) \right]^{p_k} \leq C \left\{ k^{-s} \left[M \left(\frac{q_k (x_k)}{\rho_1} \right) \right]^{p_k} + k^{-s} \left[M \left(\frac{q_k (y_k)}{\rho_2} \right) \right]^{p_k} \right\}.$$

Since F is a normal space, we have

$$\left(k^{-s} \left[M \left(\frac{q_k (\alpha x_k + \beta y_k)}{\rho_3} \right) \right]^{p_k} \right) \in F$$

which shows that $\alpha x + \beta y \in F(X_k, M, p, s)$. □

Theorem 2.2 $F(X_k, M, p, s)$ is a topological linear space, paranormed by

$$g(x) = \inf \left\{ \rho^{p_n/H} > 0 : \left\| \left(k^{-s} \left[M \left(\frac{q_k (x_k)}{\rho} \right) \right]^{p_k} \right) \right\|_F^{1/H} \leq 1, n \in \mathbb{N} \right\},$$

where $H = \max (1, h)$.

To prove this theorem we need the following lemma.

Lemma 1 Let F be a normal sequence algebra, $\| \cdot \|_F$ be an absolutely monotone seminorm on F and let $p > 1$. Then

$$\left\| (u + v)^p \right\|_F^{1/p} \leq \|u^p\|_F^{1/p} + \|v^p\|_F^{1/p},$$

for every $u = (u_n), v = (v_n) \in F$; [8].

Proof. [Proof of Theorem 2.2] Let $x = (x_k), y = (y_k) \in F(X_k, M, p, s)$. It is easy to see that $g(x) = g(-x)$ and $g(\theta) = 0$ for $\theta = (\theta_1, \theta_2, \ldots)$ the null element of $F(X_k, M, p, s)$ (where θ_i is the zero element of X_i for each i).

We shall now show the subadditivity of g. By taking $\alpha = \beta = 1$ in Theorem 2.1, we have
Some Structural Properties of Vector Valued Orlicz Sequence Space

\[k^{-s} \left[M \left(\frac{q_k(x_k + y_k)}{\rho_3} \right) \right]^{p_k} \leq k^{-s} \left[M \left(\frac{q_k(x_k)}{\rho_1} \right) + M \left(\frac{q_k(y_k)}{\rho_2} \right) \right]^{p_k} \]

\[= \left(k^{-s/3} \left[M \left(\frac{q_k(x_k)}{\rho_1} \right) + M \left(\frac{q_k(y_k)}{\rho_2} \right) \right]^{p_k/3} \right)^H \]

\[\leq \left(k^{-s/3} \left[M \left(\frac{q_k(x_k)}{\rho_1} \right) \right]^{p_k/3} \right)^H + k^{-s/3} \left[M \left(\frac{q_k(y_k)}{\rho_2} \right) \right]^{p_k/3} \right)^H \]

Considering Lemma 1, we get

\[\left\| \left(k^{-s} \left[M \left(\frac{q_k(x_k + y_k)}{\rho_3} \right) \right]^{p_k} \right)^{1/3} \right\|_F \leq \left\| \left(k^{-s} \left[M \left(\frac{q_k(x_k)}{\rho_1} \right) \right]^{p_k/3} \right)^{1/3} \right\|_F + \left\| \left(k^{-s} \left[M \left(\frac{q_k(y_k)}{\rho_2} \right) \right]^{p_k/3} \right)^{1/3} \right\|_F \]

which means that \(g(x + y) \leq g(x) + g(y) \).

Finally, we show that the scalar multiplication is continuous. Let \(\lambda \) be any complex number. By (1.1), we have

\[g(\lambda x) = \inf \left\{ \rho^{p_n/3} > 0 : \left\| \left(k^{-s} \left[M \left(\frac{q_k(\lambda x_k)}{\rho} \right) \right]^{p_k} \right)^{1/3} \right\|_F \leq 1, \ n \in \mathbb{N} \} \]

Then

\[g(\lambda x) = \inf \left\{ (|\lambda| r)^{p_n/3} > 0 : \left\| \left(k^{-s} \left[M \left(\frac{q_k(x_k)}{r} \right) \right]^{p_k} \right)^{1/3} \right\|_F \leq 1, \ n \in \mathbb{N} \} \]

where \(r = \rho / |\lambda| \). Since \(|\lambda|^{p_n} \leq \max (1, |\lambda|^{\sup p_n}) \), we have

\[g(\lambda x) = \max (1, |\lambda|^{\sup p_n})^{1/3} \]

\[\cdot \inf \left\{ r^{p_n/3} > 0 : \left\| \left(k^{-s} \left[M \left(\frac{q_k(x_k)}{r} \right) \right]^{p_k} \right)^{1/3} \right\|_F \leq 1, \ n \in \mathbb{N} \} \]

which converges to zero whenever \(x \) converges to zero in \(F(X_k, M, p, s) \).

Suppose that \(\lambda_n \to 0 \) and \(x \) is fixed in \(F(X_k, M, p, s) \). Then,

\[t = (t_k) = \left(k^{-s} \left[M \left(\frac{q_k(x_k)}{\rho} \right) \right]^{p_k} \right) \in F \]
for some $\rho > 0$. For arbitrary $\varepsilon > 0$, let N be a positive integer such that

$$
\left\| t - \sum_{k=1}^{N} t_k e_k \right\|_F = \left\| \sum_{k=N+1}^{\infty} t_k e_k \right\|_F < \left(\frac{\varepsilon}{2} \right)^H,
$$

since (e_k) is a Schauder basis for F. Let $0 < \|\lambda\| < 1$, using convexity of M and absolutely monotonicity of $\|\cdot\|_F$ we get

$$
\left\| \sum_{k=N+1}^{\infty} k^{-s} \left[M \left(\frac{q_k (\lambda x_k)}{\rho} \right) \right] e_k \right\|_F \leq \left\| \sum_{k=N+1}^{\infty} k^{-s} \left[|\lambda| M \left(\frac{q_k (x_k)}{\rho} \right) \right] e_k \right\|_F < \left(\frac{\varepsilon}{2} \right)^H.
$$

Since M is continuous everywhere in $[0, \infty)$, then

$$
f(u) =: \sum_{k=1}^{N} k^{-s} \left[M \left(\frac{q_k (ux_k)}{\rho} \right) \right] e_k \right\|_F
$$

is continuous at 0. So there is $0 < \delta < 1$ such that $f(u) < (\varepsilon/2)^H$ for $0 < u < \delta$. Let K be a positive integer such that $|\lambda_n| < \delta$ for $n > K$, then for $n > K$

$$
\left\| \sum_{k=1}^{N} k^{-s} \left[M \left(\frac{q_k (\lambda_n x_k)}{\rho} \right) \right] e_k \right\|_F^{1/H} < \frac{\varepsilon}{2}.
$$

Thus

$$
\left\| \left(k^{-s} \left[M \left(\frac{q_k (\lambda_n x_k)}{\rho} \right) \right] e_k \right) \right\|_F^{1/H} < \frac{\varepsilon}{2}
$$

for $n > K$, so that $g(\lambda x) \to 0$ as $\lambda \to 0$.

This completes the proof of Theorem 2.2. \(\square\)

Remark 1 It can be easily verified that when $F = \ell_1$, $(X_k, q_k) = (C, |\cdot|)$, $p_k = 1$ for each $k \in \mathbb{N}$ and $s = 0$ the paranorms defined on $F(X_k, M, p, s)$ and $\ell_M(p)$ are the same, and also taking $q_k = \|\cdot\|_{X_k}$, $p_k = 1$ for each $k \in \mathbb{N}$ and $s = 0$ in (1.1), one obtains the norm of $F(X_k, M)$.

Theorem 2.3 $F(X_k, M, p, s)$ is complete with the paranorm (1.1) if X_k is complete under the seminorm q_k for each $k \in \mathbb{N}$.

Proof. Let (x^i) be any Cauchy sequence in $F(X_k, M, p, s)$. We get by (1.1) that

$$
\left\| \left(k^{-s} \left[M \left(\frac{q_k (x^i_k - x^j_k)}{g(x^i - x^j)} \right) \right] e_k \right) \right\|_F^{1/H} \leq 1.
$$
Since F is a normal space and (e_k) is a Schauder basis of F, it follows that

$$
k^{-s} \left[M \left(\frac{q_k(x_k^i - x_k^j)}{g(x^i - x^j)} \right) \right]^{p_k} \|e_k\|_F \leq \left\| k^{-s} \left[M \left(\frac{q_k(x_k^i - x_k^j)}{g(x^i - x^j)} \right) \right]^{p_k} \right\|_F \leq 1.
$$

We choose γ with $\gamma^H \|e_k\|_F > 1$ and $x_0 > 0$, such that $\gamma^H \|e_k\|_F \frac{x_0^H}{2} \left[p \left(\frac{x_0}{2} \right) \right]^{p_k} \geq 1$, where p is the kernel associated with M. Hence,

$$
k^{-s} \left[M \left(\frac{q_k(x_k^i - x_k^j)}{g(x^i - x^j)} \right) \right]^{p_k} \|e_k\|_F \leq \gamma^H \|e_k\|_F \frac{x_0^H}{2} \left[p \left(\frac{x_0}{2} \right) \right]^{p_k}
$$

for each $k \in \mathbb{N}$. Using the integral representation of Orlicz function M, we get

$$
k^{-s} \left[q_k(x_k^i - x_k^j) \right]^{p_k} \leq \gamma^H x_0^H \left[g(x^i - x^j) \right]^H.
$$

(2.1)

For given $\varepsilon > 0$, we choose an integer i_0 such that $g(x^i - x^j) < \frac{\varepsilon^{1/H}}{\gamma x_0}$ for all $i, j > i_0$.

(2.2)

From (2.1) and (2.2) we get

$$
k^{-s} \left[q_k(x_k^i - x_k^j) \right]^{p_k} < \varepsilon \text{ for all } i, j > i_0.
$$

and so,

$$q_k(x_k^i - x_k^j) < \varepsilon \text{ for all } i, j > i_0.
$$

Hence, there exists a sequence $x = (x_k)$ such that $x_k \in X_k$ for each $k \in \mathbb{N}$ and $q_k(x_k^i - x_k) < \varepsilon$ as $i \to \infty$,

for each fixed $k \in \mathbb{N}$. For given $\varepsilon > 0$, choose an integer $n > 1$ such that $g(x^i - x^j) < \varepsilon/2$, for all $i, j > n$ and a $\rho > 0$, such that $g(x^i - x^j) < \rho < \varepsilon/2$. Since F is a normal space and (e_k) is a Schauder basis of F,

$$
\left\| \sum_{k=1}^{n} k^{-s} \left[M \left(\frac{q_k(x_k^i - x_k^j)}{\rho} \right) \right]^{p_k} e_k \right\|_F \leq \left\| k^{-s} \left[M \left(\frac{q_k(x_k^i - x_k^j)}{\rho} \right) \right]^{p_k} \right\|_F \leq 1.
$$

Since M is continuous, so by taking $j \to \infty$ and $i, j > n$ in the above inequality we get

$$
\left\| \sum_{k=1}^{n} k^{-s} \left[M \left(\frac{q_k(x_k^i - x_k)}{2\rho} \right) \right]^{p_k} e_k \right\|_F < 1.
$$
Letting $n \to \infty$, we get $g(x^i - x) < 2\rho < \varepsilon$ for all $i > n$. That is to say that (x^i) converges to x in the paranorm of $F(X_k, M, p, s)$. Now, we should show that $x \in F(X_k, M, p, s)$. Since $x^i = (x^i_k) \in F(X_k, M, p, s)$, there exists a $\rho > 0$ such that

$$\left(k^{-s} \left[M \left(\frac{q_k(x^i_k)}{\rho}\right)\right]^{p_k}\right) \in F.$$

Since $q_k(x^i_k - x_k) \to 0$ as $i \to \infty$, for each fixed k we can choose a positive number δ_k^i satisfying $0 < \delta_k^i < 1$ such that

$$k^{-s} \left[M \left(\frac{q_k(x^i_k - x_k)}{\rho}\right)\right]^{p_k} < \delta_k^i k^{-s} \left[M \left(\frac{q_k(x^i_k)}{\rho}\right)\right]^{p_k}.$$

Consider

$$M \left(\frac{q_k(x^i_k)}{2\rho}\right) = M \left(\frac{q_k(x^i_k + x_k - x_k^i)}{2\rho}\right) \leq M \left(\frac{q_k(x^i_k)}{\rho}\right) + M \left(\frac{q_k(x_k - x_k^i)}{\rho}\right)$$

Hence,

$$k^{-s} \left[M \left(\frac{q_k(x^i_k)}{2\rho}\right)\right]^{p_k} \leq k^{-s} \left[M \left(\frac{q_k(x^i_k)}{\rho}\right) + M \left(\frac{q_k(x^i_k - x_k)}{\rho}\right)\right]^{p_k} \leq C k^{-s} \left\{ \left[M \left(\frac{q_k(x^i_k)}{\rho}\right)\right]^{p_k} + \left[M \left(\frac{q_k(x_k - x_k^i)}{\rho}\right)\right]^{p_k} \right\} \leq C (1 + \delta_k^i) k^{-s} \left[M \left(\frac{q_k(x^i_k)}{\rho}\right)\right]^{p_k}.$$

Since F is normal,

$$\left(k^{-s} \left[M \left(\frac{q_k(x^i_k)}{2\rho}\right)\right]^{p_k}\right) \in F,$$

that is, $x = (x_k) \in F(X_k, M, p, s)$. This step completes the proof. \hfill \Box

Theorem 2.4 Let M and M_1 be two Orlicz functions. If M satisfies the Δ_2-condition, then

$$F(X_k, M_1, p, s) \subseteq F(X_k, M \circ M_1, p, s).$$

Proof. Let $x \in F(X_k, M_1, p, s)$. Then

$$\left(k^{-s} \left[M_1 \left(\frac{q_k(x_k)}{\rho}\right)\right]^{p_k}\right) \in F$$

for some $\rho > 0$. Since M satisfies the Δ_2-condition, we have

$$k^{-s} \left[M \left(M_1 \left(\frac{q_k(x_k)}{\rho}\right)\right)\right]^{p_k} \leq k^{-s} \left[KM_1 \left(\frac{q_k(x_k)}{\rho}\right) M(1)\right]^{p_k} \leq \max \left(1, [KM(1)]^h\right) k^{-s} \left[M_1 \left(\frac{q_k(x_k)}{\rho}\right)\right]^{p_k}. $$
Thus, we obtain by the normality of F that $x \in F(X_k, M \circ M_1, p, s)$. \hfill \Box

Theorem 2.5 Let M_1 and M_2 be two Orlicz functions. Then the following inclusions are hold for non-negative real numbers s_1, s_2, s:

(i) $F(X_k, M_1, p, s) \cap F(X_k, M_2, p, s) \subseteq F(X_k, M_1 + M_2, p, s)$,

(ii) If $\limsup_{t \to \infty} M_1(t)/M_2(t) < \infty$, then $F(X_k, M_2, p, s) \subseteq F(X_k, M_1, p, s)$,

(iii) If $s_1 \leq s_2$, then $F(X_k, M_1, p, s_1) \subseteq F(X_k, M_1, p, s)$,

(iv) If $F_1 \subseteq F_2$, then $F_1 (X_k, M_1, p, s) \subseteq F_2 (X_k, M_1, p, s)$.

Proof. (i) Let $x \in F(X_k, M_1, p, s) \cap F(X_k, M_2, p, s)$. Then there exist some $\rho_1, \rho_2 > 0$ such that

$$
\left(k^{-s} \left[M_1 \left(\frac{q_k(x_k)}{\rho_1} \right) \right]^{p_k} \right), \left(k^{-s} \left[M_2 \left(\frac{q_k(x_k)}{\rho_2} \right) \right]^{p_k} \right) \in F.
$$

Letting $\rho = \max(\rho_1, \rho_2)$, we get

$$
k^{-s} \left[(M_1 + M_2) \left(\frac{q_k(x_k)}{\rho} \right) \right]^{p_k} \leq k^{-s} \left[M_1 \left(\frac{q_k(x_k)}{\rho_1} \right) + M_2 \left(\frac{q_k(x_k)}{\rho_2} \right) \right]^{p_k}
\leq C \left\{ k^{-s} \left[M_1 \left(\frac{q_k(x_k)}{\rho_1} \right) \right]^{p_k} + k^{-s} \left[M_2 \left(\frac{q_k(x_k)}{\rho_2} \right) \right]^{p_k} \right\}.
$$

Since F is a normal space, $x \in F(X_k, M_1 + M_2, p, s)$.

(ii) We can find $K > 0$ such that $M_1(t)/M_2(t) \leq K$ for all $t \geq 0$, since $\limsup_{t \to \infty} M_1(t)/M_2(t) < \infty$. Let $x \in F(X_k, M_2, p, s)$. There exists a $\rho > 0$ such that

$$
\frac{M_1 \left(\frac{q_k(x_k)}{\rho} \right)}{M_2 \left(\frac{q_k(x_k)}{\rho} \right)} \leq K.
$$

Hence

$$
k^{-s} \left[M_1 \left(\frac{q_k(x_k)}{\rho} \right) \right]^{p_k} \leq \max (1, K^h) k^{-s} \left[M_2 \left(\frac{q_k(x_k)}{\rho} \right) \right]^{p_k}.
$$

Since F is normal, $x \in F(X_k, M_1, p, s)$.

The proofs of the cases (iii) and (iv) are trivial. \hfill \Box

Corollary 1 We have

(i) $F(X_k, p, s) \subseteq F(X_k, M, p, s)$ for any Orlicz function M satisfying the Δ_2-condition,

(ii) $F(X_k, M, p) \subseteq F(X_k, M, p, s)$ for any Orlicz function M.
3 A Closed Subspace of $F(X_k, M, p, s)$

We define $[F(X_k, M, p, s)]$ by

$$[F(X_k, M, p, s)] = \left\{ x = (x_k) : x_k \in X_k \text{ for each } k \in \mathbb{N} \text{ and } \left(k^{-s} \left\{ M \left(\frac{q_k(x_k)}{\rho} \right) \right\}^{p_k} \right) \in F \text{ for every } \rho > 0 \right\}.$$

The space $[F(X_k, M, p, s)]$ is clearly a subspace of $F(X_k, M, p, s)$, and its topology is introduced by the paranorm of $F(X_k, M, p, s)$ given by (1.1).

Theorem 3.1 $[F(X_k, M, p, s)]$ is a complete paranormed space with the paranorm given by (1.1) if (X_k, q_k) is complete seminormed space for each $k \in \mathbb{N}$.

Proof. Since $F(X_k, M, p, s)$ is just shown that a complete paranormed space under the paranorm (1.1) and $[F(X_k, M, p, s)]$ is a subspace of $F(X_k, M, p, s)$, it is sufficient to show that it is closed. For this let us consider $(x^i) = (x^i_k) \in [F(X_k, M, p, s)]$ such that $g(x^i - x) \to 0$ as $i \to \infty$, where $x = (x_k) \in F(X_k, M, p, s)$.

So for given $\xi > 0$, we can choose an integer i_0 such that

$$g(x^i - x) < \frac{\xi}{2}, \forall i > i_0.$$

Consider

$$k^{-s} \left\{ M \left(\frac{q_k(x_k)}{\xi} \right) \right\}^{p_k} \leq k^{-s} \left\{ \left(\frac{1}{2} M \left(\frac{q_k(x^i_k - x_k)}{\xi/2} \right) \right) + \frac{1}{2} M \left(\frac{q_k(x^i_k)}{\xi/2} \right) \right\}^{p_k} \leq Ck^{-s} \left\{ \left(M \left(\frac{q_k(x^i_k - x_k)}{g(x^i - x)} \right) \right)^{p_k} + \left(M \left(\frac{q_k(x^i_k)}{g(x^i - x)} \right) \right)^{p_k} \right\}.$$

Since

$$k^{-s} \left\{ M \left(\frac{q_k(x^i_k - x_k)}{g(x^i - x)} \right) \right\}^{p_k}, k^{-s} \left\{ M \left(\frac{q_k(x^i_k)}{g(x^i - x)} \right) \right\}^{p_k} \in F$$

and F is normal space,

$$k^{-s} \left\{ M \left(\frac{q_k(x_k)}{\xi} \right) \right\}^{p_k} \in F.$$

This implies $x = (x_k) \in [F(X_k, M, p, s)]$ which shows that $[F(X_k, M, p, s)]$ is complete.

Proposition 1 $[F(X_k, M, p, s)]$ is an AK-space.

Proof. Let $x = (x_k) \in [F(X_k, M, p, s)]$. Therefore,

$$k^{-s} \left\{ M \left(\frac{q_k(x_k)}{\rho} \right) \right\}^{p_k} \in F.$$
for every $\rho > 0$. Since (e_k) is a Schauder basis of F, for a given $\varepsilon \in (0, 1)$, we can find an arbitrary positive integer m_0 such that

$$
\left\| \sum_{k=m_0}^{\infty} k^{-s} \left[M \left(\frac{q_k(x_k)}{\varepsilon} \right) \right]^{p_k} e_k \right\|_F < 1.
$$

(3.1)

Using the definition of the paranorm, we have

$$
g(x - x^{[m]}) = \inf \left\{ \xi^{p_n/H} > 0: \left\| \sum_{k=m+1}^{\infty} k^{-s} \left[M \left(\frac{q_k(x_k)}{\xi} \right) \right]^{p_k} e_k \right\|_F^{1/H} \leq 1, n \in \mathbb{N} \right\},
$$

where $x^{[m]}$ denotes the m-th section of x. From this equality and (3.1), it is obvious that $g(x - x^{[m]}) < \varepsilon$ for all $m > m_0$.

Therefore $[F(X_k, M, p, s)]$ is an AK-space.

Theorem 3.2 Let $(x^i) = (x^i_k)$ be a sequence of the elements of $[F(X_k, M, p, s)]$ and $x = (x_k) \in [F(X_k, M, p, s)]$. Then $x^i \rightarrow x$ in $[F(X_k, M, p, s)]$ iff

(i) $x^i_k \rightarrow x_k$ in X_k for each $k \geq 1$,

(ii) $g(x^i) \rightarrow g(x)$ as $i \rightarrow \infty$.

Proof. The necessity part is obvious.

Sufficiency. Suppose that (i) and (ii) hold, and let m be an arbitrary positive integer. Then

$$
g(x^i - x) \leq g(x^i - x^{[m]}) + g(x^{[m]} - x^{[m]}) + g(x^{[m]} - x),
$$

where $x^{i[m]}$, $x^{[m]}$ denote the m-th sections of x^i and x, respectively. Letting $i \rightarrow \infty$, we get

$$
\limsup_{i \rightarrow \infty} g(x^i - x) \leq \limsup_{i \rightarrow \infty} g(x^i - x^{[m]}) + \limsup_{i \rightarrow \infty} g(x^{[m]} - x^{[m]}) + g(x^{[m]} - x)
\leq 2g(x^{[m]} - x).
$$

Since m is arbitrary, letting $m \rightarrow \infty$, we get $\limsup_{i \rightarrow \infty} g(x^i - x) = 0$, i.e. $g(x^i - x) \rightarrow 0$ as $i \rightarrow \infty$.

Theorem 3.3 $[F(X_k, M, p, s)]$ is separable if for each $k \in \mathbb{N}$, X_k is.

Proof. Suppose X_k is separable for each $k \in \mathbb{N}$. Then, there exists a countable dense subset U_k of X_k. Let Z denote the set of finite sequences $z = (z_k)$ where $z_k \in U_k$ for each $k \in \mathbb{N}$ and

$$
(z_k) = (z_1, z_2, \ldots, z_m, \theta_{m+1}, \theta_{m+2}, \ldots)
$$
for arbitrary \(m \in \mathbb{N} \). Obviously, \(Z \) is a countable subset of \([F(X_k, M, p, s)]\). We shall prove that \(Z \) is dense in \([F(X_k, M, p, s)]\). Let \(x \in [F(X_k, M, p, s)] \). Since \([F(X_k, M, p, s)]\) is an AK-space, \(g \left(x - x^m \right) \to 0 \) as \(m \to \infty \). So for a given \(\varepsilon > 0 \), there exists an integer \(m_1 > 1 \) such that
\[
g \left(x - x^m \right) < \varepsilon/2 \text{ for all } m \geq m_1.
\]
If we take \(m = m_1 \), then
\[
g \left(x - x^{m_1} \right) < \varepsilon/2.
\]
Let us choose \(y = (y_k) = (y_1, y_2, \ldots, y_{m_1}, \theta_{m_1+1}, \theta_{m_1+2}, \ldots) \in Z \) such that
\[
q_k \left(x^{m_1}_k - y_k \right) < \frac{\varepsilon}{2M(1)m_1 \|e_k\|_F} \text{ for each } k \in \mathbb{N}.
\]
Now
\[
g \left(x - y \right) = g \left(x - x^{m_1} + x^{m_1} - y \right) \\
\leq g \left(x - x^{m_1} \right) + g \left(x^{m_1} - y \right) < \varepsilon.
\]
This implies that \(Z \) is dense in \([F(X_k, M, p, s)]\). Hence \([F(X_k, M, p, s)]\) is separable.

Acknowledgement

The first author would like to express his great thanks to Professor Feyzi Başar, Matematik Eğitimi Bölümü, İnönü Üniversitesi, 44280, Malatya - Türkiye, for his careful reviewing and some useful comments on the first draft of the paper.

References

(Received 25 October 2005)

M. K. Özdemir and İ. Solak
Department of Mathematics
Inonu University
44280 Malatya, Turkey.
e-mail : kozdemir@inonu.edu.tr