Modules which are Reduced over their Endomorphism Rings

N. Agayev†, S. Halicioglu‡, A. Harmanci‡ and B. Ungor‡

†Fatih Sultan Mehmet Vakif University, Faculty Of Engineering, Computer Engineering Department, Istanbul, Turkey
e-mail: naghayev@fsm.edu.tr
‡Department of Mathematics, Hacettepe University, 06800 Ankara, Turkey
e-mail: halici@ankara.edu.tr (S. Halicioglu)
harmanci@hacettepe.edu.tr (A. Harmanci)
bungor@science.ankara.edu.tr (B. Ungor)

Abstract: Let R be an arbitrary ring with identity and M a right R-module with $S = \text{End}_R(M)$. The module M is called reduced if for any $m \in M$ and $f \in S$, $fm = 0$ implies $fM \cap Sm = 0$. In this paper, we investigate properties of reduced modules and rigid modules.

Keywords: Reduced modules, rigid modules, semicommutative modules, abelian modules, Baer modules, quasi-Baer modules, principally quasi-Baer modules, Rickart modules, principally projective modules.

2010 Mathematics Subject Classification: 16D10; 16D80; 16D99.

1 Introduction

Throughout this paper R denotes an associative ring with identity. For a module M, $S = \text{End}_R(M)$ denotes the ring of right R-module endomorphisms of M. Then M is a left S-module, right R-module and (S, R)-bimodule. In this work, for any rings S and R and any (S, R)-bimodule M, $r_M(.)$ and $l_M(.)$ denote the right annihilator of a subset of M in R and the left annihilator of a subset of R in M, respectively. Similarly, $l_S(.)$ and $r_M(.)$ denote the left annihilator of a subset

Copyright © 2015 by the Mathematical Association of Thailand. All rights reserved.
2 Reduced Modules

Let M be an R-module with $S = \text{End}_R(M)$. Some properties of R-modules do not characterize the ring R, namely there are reduced R-modules but R need not be reduced and there are abelian R-modules but R is not an abelian ring. Because of that reduced, rigid, symmetric, semicommutative and Armendariz modules in terms of endomorphism rings S are introduced by the present authors (see [8]). In this section we study properties of modules which are reduced over their endomorphism rings.

We start with the following proposition.

Proposition 2.1. Let M be an R-module with $S = \text{End}_R(M)$. Consider the following conditions for $f \in S$.

1. $S(\text{Ker}f) \cap \text{Im}f = 0$.
2. Whenever $m \in M$, $fm = 0$ if and only if $\text{Im}f \cap Sm = 0$.

Then (1) \Rightarrow (2). If M is a semicommutative module, then (2) \Rightarrow (1).

Proof. Clear.

Following the definition of Lee and Zhou [1], M is a reduced module if and only if condition (2) of Proposition 2.1 holds for each $f \in S$. If M is a reduced
module, then it is semicommutative and so condition (1) of Proposition also holds for each \(f \in S \).

As an illustration we state the following examples.

Example 2.2. Let \(p \) be any prime integer and \(M \) denote the \(\mathbb{Z} \)-module \(\left(\mathbb{Z}/\mathbb{Z}p \right) \oplus \mathbb{Q} \). Then \(S \) is isomorphic to the matrix ring \(\left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \mid a \in \mathbb{Z}_p, b \in \mathbb{Q} \right\} \). It is evident that \(M \) is a reduced module.

Note that every module need not be reduced.

Example 2.3. Let \(p \) be any prime integer and \(M = \mathbb{Z}(p^\infty) \) the Prüfer \(p \)-group as a \(\mathbb{Z} \)-module. Let \(\{v_i\} \) \((i = 1, 2, 3, \cdots)\) be elements in \(M \) which they satisfy the equalities \(pv_1 = 0 \), \(pv_i = v_{i-1} \) \((i = 2, 3, \cdots)\). By [9, page 54], \(S \) is isomorphic to the ring of \(p \)-adic integers \(\mathbb{A}(p) \). Define \(f \) as \(f(v_1) = 0 \) and \(f(v_i) = v_{i+1} \) for \((i = 2, 3, 4, \cdots)\). Let \(m = v_2 \). Then \(f(v_2) = v_1 \) and \(f^2(v_2) = 0 \). Hence \(M \) is not reduced.

Lemma 2.4. Let \(M \) be an \(R \)-module with \(S = \text{End}_R(M) \). If \(M \) is a reduced module, then \(S \) is a reduced ring.

Proof. It is clear from [8, Lemma 2.11] and [8, Proposition 2.14].

Definition 2.5. Let \(M \) be an \(R \)-module with \(S = \text{End}_R(M) \). The module \(M \) is called principally projective if for any \(m \in M \), \(\ell_S(m) = Se \) for some \(e^2 = e \in S \).

It is obvious that the module \(R \) is principally projective if and only if the ring \(R \) is left principally projective. It is straightforward that all Baer and quasi-Baer modules are principally projective. And every quasi-Baer module is principally quasi-Baer. There are principally projective modules which are not quasi-Baer or Baer (see [10, Example 8.2]).

Example 2.6. Let \(R \) be a Prüfer domain (a commutative ring with an identity, no zero divisors and all finitely generated ideals are projective) and \(M \) the right \(R \)-module \(R \oplus R \). By ([8], page 17), \(S \) is a \(2 \times 2 \) matrix ring over \(R \) and it is a Baer ring. Hence \(M \) is Baer and so principally projective module.

Note that the endomorphism ring of a principally projective module may not be a right principally projective ring in general. For if \(M \) is a principally projective module and \(\varphi \in S \), then we have two cases. \(\text{Ker}\varphi = 0 \) or \(\text{Ker}\varphi \neq 0 \). If \(\text{Ker}\varphi = 0 \), then for any \(f \in rs(\varphi) \), \(\varphi f = 0 \) implies \(f = 0 \). Hence \(rs(\varphi) = 0 \). Assume that \(\text{Ker}\varphi \neq 0 \). There exists a nonzero \(m \in M \) such that \(\varphi m = 0 \). By hypothesis, \(\varphi \in \ell_S(m) = Se \) for some \(e^2 = e \in S \). In this case \(\varphi = \varphi e \) and so \(rs(\varphi) \leq (1 - e)S \). The following example shows that this inclusion is strict.

Example 2.7. Let \(Q \) be the ring and \(N \) the \(Q \)-module constructed by Osofsky in ([11]). Since \(Q \) is commutative, we can just as well think of \(N \) as a right \(Q \)-module. Let \(S = \text{End}_Q(N) \). It is easy to see that \(N \) is a principally projective
module. Identify S with the ring \[
\begin{bmatrix}
Q & 0 \\
Q/I & Q/I
\end{bmatrix}
\] in the obvious way, and consider \[
\varphi = \begin{bmatrix}
0 & 0 \\
1 + I & 0
\end{bmatrix} \in S.
\] Then \[
r_S(\varphi) = \begin{bmatrix}
I & 0 \\
Q/I & Q/I
\end{bmatrix}.
\] This is not a direct summand of S because I is not a direct summand of Q. Therefore S is not a right principally projective ring.

Proposition 2.8. Let M be an R-module with $S = \text{End}_R(M)$. If M is semicommutative, then we have the followings.

(1) M is a Baer module if and only if M is a quasi-Baer module.

(2) M is a principally projective module if and only if M is a principally quasi-Baer module.

Proof. Let M be an R-module with M semicommutative.

(1) The necessity is clear. By Theorem 2.14 of [12] and [2, Lemma 2.15], the sufficiency follows.

(2) The necessity follows from the proof of Lemma 2.15 of [12]. The sufficiency is clear from the semicommutativity. \qed

Recall that a ring R is called abelian if every idempotent is central, that is, $ae = ea$ for any $e^2 = e, a \in R$. Abelian modules are introduced by Roos in [13] and studied by Goodearl and Boyle [14], Roman and Rizvi [15]. Following Roos [13], a module M is called abelian if all idempotents of S are central.

Remark 2.9. It is easy to show that if M is a semicommutative module, then S is an abelian ring. It follows from Theorem 2.14 of [12], every reduced module M is semicommutative, and every semicommutative module M is abelian. The converses hold if M is a principally projective module. Note that for a prime integer p, the cyclic group M of p^2 elements is a \mathbb{Z}-module for which $S = \mathbb{Z}_{p^2}$. The module M is neither reduced nor principally projective although it is semicommutative.

Proposition 2.10. Let M be a uniform R-module with $S = \text{End}_R(M)$. If M is a reduced module, then S is a domain.

Proof. For $f, g \in S$, suppose $fg = 0$ with $f \neq 0$. We show that $g = 0$. For any $m \in M$, $fgmR = 0$ and so $fM \cap SgmR = 0$. By hypothesis $fM = 0$ or $SgmR = 0$. Then $Sgm = 0$ and so $gm = 0$ for all $m \in M$. Hence $g = 0$. \qed

Lemma 2.11. [16, Lemma 1.9] Let a module $M = M_1 \oplus M_2$ be a direct sum of submodules M_1, M_2. Then M_1 is a fully invariant submodule of M if and only if $\text{Hom}(M_1, M_2) = 0$.

We observe in Example 8.7 that the direct sum of reduced modules need not be reduced. Note the following fact.

Proposition 2.12. Let M be an R-module with $S = \text{End}_R(M)$. Let $M = M_1 \oplus M_2$ be a decomposition of M where M_1 and M_2 are fully invariant submodules of M with $S_1 = \text{End}_R(M_1)$ and $S_2 = \text{End}_R(M_2)$.

(1) If M_1 and M_2 are reduced over S, then M is reduced.

(2) If M_1 and M_2 are reduced over S_1 and S_2 respectively, then M is reduced.
Proof. (1) Let \(f \in S, \ m \in M \) and \(fm = 0 \). There exist \(m_1 \in M_1 \) and \(m_2 \in M_2 \) such that \(m = m_1 + m_2 \). Hence \(fm_1 + fm_2 = 0 \). Since \(M_1 \) and \(M_2 \) are fully invariant submodules of \(M \), \(fm_1 = 0 \) and \(fm_2 = 0 \) by Lemma 2.11. So
\[fM_1 \cap Sm_1 = 0 \text{ and } fM_2 \cap Sm_2 = 0. \]
Then \(x = fm' = gm \) for some \(m' \in M \) and \(g \in S \). For \(m' \in M \) there exist \(m_1 \in M_1 \) and \(m_2 \in M_2 \) such that \(m' = m_1 + m_2 \). So
\[fm_1' - gm_1 = gm_2 - fm_2' \in M_1 \cap M_2 = 0. \]
It follows that
\[fm_1 = gm_1 = 0 \text{ and } fm_2 = gm_2 = 0. \]
Therefore \(x = 0 \).

(2) Let \(f \in S, \ m \in M \) and \(fm = 0 \). There exist \(m_1 \in M_1 \) and \(m_2 \in M_2 \) such that \(m = m_1 + m_2 \). Hence \(fm_1 + fm_2 = 0 \). Since \(M_1 \) and \(M_2 \) are fully invariant submodules of \(M \), \(fm_1 = 0 \) and \(fm_2 = 0 \). Let the restrictions of \(f \) to \(M_1 \) and \(M_2 \) be denoted by the same \(f \). Then
\[fM_1 \cap S_1m_1 = 0 \text{ and } fM_2 \cap S_2m_2 = 0. \]
Let \(x \in fM \cap Sm \). Then \(x = fm' = gm \) for some \(m' \in M \) and \(g \in S \). For \(m' \in M \), there exist \(m_1 \in M_1 \) and \(m_2 \in M_2 \) such that \(m' = m_1 + m_2 \). So
\[fm_1 + fm_2 = gm_1 + gm_2 \]. It follows that
\[fm_1 = gm_1 = 0 \text{ and } fm_2 = gm_2 = 0. \]
Therefore \(x = 0 \). \(\square \)

Corollary 2.13. Let \(M \) be an \(R \)-module with \(S = \text{End}_R(M) \). Let \(M = M_1 \oplus M_2 \) where \(M_1 \) and \(M_2 \) are submodules of \(M \) with \(S_1 = \text{End}_R(M_1) \) and \(S_2 = \text{End}_R(M_2) \). If \(M \) is semicommutative, then we have the following.

1. If \(M_1 \) and \(M_2 \) are reduced over \(S \), then \(M \) is reduced.
2. If \(M_1 \) and \(M_2 \) are reduced over \(S_1 \) and \(S_2 \) respectively, then \(M \) is reduced.

Proof. Let \(M \) be a semicommutative module. It is enough to show that every direct summand \(N \) of \(M \) is fully invariant. We write \(M = N \oplus L \). Let \(\pi \) denote the natural projection of \(M \) onto \(N \). From \(\pi(1 - \pi) = 0 \) and \((1 - \pi)\pi = 0 \) we have
\[\pi y(1 - \pi) = 0 \text{ and } (1 - \pi)y\pi = 0 \]
for each \(g \in S \). Then \(\pi \) is a central idempotent in \(S \). Hence
\[g(N) = g(\pi(M)) = \pi(g(M)) \leq N. \]
This completes the proof. \(\square \)

We end this section with some observations relating to being \(M \) an reduced module and \(S \) an reduced ring. Recall that a module \(M \) is called \(n \)-epiretractable \([7]\) if every \(n \)-generated submodule of \(M \) is a homomorphic image of \(M \).

Theorem 2.1. Let \(M \) be an \(R \)-module with \(S = \text{End}_R(M) \). Then the following hold.

1. If \(M \) is a 1-epiretractable module and \(S \) is a reduced ring, then \(M \) is reduced.
2. If \(M \) is a principally projective module and \(S \) is a reduced ring, then \(M \) is reduced.

Proof. (1) Let \(fm = 0 \) for \(f \in S \) and \(m \in M \). Since \(M \) is 1-epiretractable, there exists \(g \in S \) such that \(gM = mR \). We have \(fgM = 0 \) and \(fg = gf = 0 \) since \(S \) is reduced. Let \(fm' = hm \in fM \cap Sm \) where \(m' \in M, h \in S \). Then
\[gfm' = ghm = 0 \text{ and } ghmR = 0. \]
This implies \(ghM = 0 \), i.e., \(gh = 0 \). Therefore
\[gh = hq = 0. \]
Now by assumption, there exists \(m_1 \in M \) such that
\[m = gm_1. \]
Then
\[fm' = hm = hgm_1 = 0. \]
Hence \(M \) is reduced.

(2) Let \(fm = 0 \) for \(f \in S \) and \(m \in M \), and \(fm' = gm \in fM \cap Sm \). Since \(fm = 0 \in mR \), we may find an idempotent \(e \) in \(S \) such that \(f \in l_S(mR) = Se \).
By hypothesis, \(e \) is central in \(S \). So \(s = fe = ef, \) \(cm = 0 \). Then \(fm' = gem = gem = 0 \). Hence \(fM \cap Sm = 0 \). Thus \(M \) is reduced.

Theorem 2.2. Let \(M \) be an \(R \)-module with \(S = \text{End}_R(M) \). If \(M \) is a reduced module, then the following hold.

1. Assume that for every submodule \(N \) of \(M \) there exist \(e^2 = e \in S \) and \(f \in S \) such that \(N \subseteq eM \) and \(f(N) = eM \). Then \(M \) is a Baer module.
2. If every fully invariant submodule is a direct summand of \(M \), then \(M \) is a Baer module.
3. If \(M \) is a uniform module, then each nonzero element of \(S \) is a monomorphism.

Proof.

1. Let \(N \) be a submodule of \(M \). Then there exist an idempotent homomorphism \(e \in S \) and \(f \in S \) such that \(N \subseteq eM \) and \(f(N) = eM \). We prove that \(fS(N) = S(1-e) \). It is trivial that \(S(1-e) \leq lS(N) \) since \(N \subseteq eM \). Let \(g \in lS(N) \). By hypothesis \(gN = 0 \) implies \(gfN = 0 \). Then \(gfN = geM = 0 \), and so \(ge = 0 \). Hence \(g = g(1-e) \in S(1-e) \). So \(lS(N) \subseteq S(1-e) \). This completes the proof.
2. Since \(M \) is a reduced module, if \(fm = 0 \) where \(f \in S \), then for all \(g \in S \), \(fgm \in fM \cap Sm = 0 \). This implies that for all \(f \in S \), \(Kerf \) is a fully invariant submodule of \(M \). Let \(I \) be an ideal of \(S \). Since \(r_M(I) = \cap_{f \in I} Kerf \) and all the \(Kerf \) are fully invariant submodules of \(M \), \(r_M(I) \) is a fully invariant submodule of \(M \). So it is a direct summand of \(M \) and therefore \(M \) is a Baer module.
3. Let \(fm = 0 \) where \(f \in S, m \in M \). Then \(fmR = 0 \). By hypothesis, \(fM \cap SmR = 0 \) and so \(fM = 0 \) or \(SmR = 0 \). Hence \(f = 0 \) or \(m = 0 \).

3 Rigid Modules

Let \(M \) be an \(R \)-module with \(S = \text{End}_R(M) \). Rigid \(R \)-modules are introduced and studied in [18] and [19] by the present authors. Recently, rigid modules over their endomorphism rings are studied in [8]. In this section we continue to investigate further properties of a rigid module over its endomorphism ring as a generalization of a reduced module over its endomorphism ring and relations between reduced, semicommutative and \(K \)-co(non)singular modules.

We mention the following obvious proposition.

Proposition 3.1. Let \(M \) be an \(R \)-module with \(S = \text{End}_R(M) \). For any \(f \in S \), the following are equivalent.

1. \(Kerf \cap Imf = 0 \).
2. For \(m \in M \), \(f^2m = 0 \) if and only if \(fm = 0 \).

A module \(M \) is called rigid if it satisfies Proposition 3.1 for every \(f \in S \). By [8] Lemma 2.20, if \(M \) is a rigid module, then \(S \) is a reduced ring and therefore abelian.

Rickart modules provide a generalization of a right principally projective ring to the general module theoretic setting. It is clear that every Baer module is a Rickart module while the converse is not true. For example, \(\mathcal{Z}(R) \) is Rickart but not Baer as a \(Z \)-module.
Proposition 3.2. Let M be an R-module with $S = \text{End}_R(M)$. If M is a reduced module, then M is a rigid module. The converse holds if M satisfies one of the following conditions.

1. M is a semicommutative module.
2. M is a principally projective module.
3. M is a Rickart module.

Proof. For any $f \in S$, $S(\text{Ker} f) \cap \text{Im} f = 0$ by hypothesis. Since $\text{Ker} f \cap \text{Im} f \subset S(\text{Ker} f) \cap \text{Im} f$, $\text{Ker} f \cap \text{Im} f = 0$. By Proposition 3.1, M is a rigid module.

Conversely, (1) Assume that M is a rigid and semicommutative module. Let $f \in S$ and $m \in M$ with $fm = 0$. Let $fm' = gm \in fM \cap Sm$. We multiply it by f from the left and we have $f^2m' = fgm$. Since M is semicommutative and $fm = 0$, $f^2m' = fgm = 0$. By hypothesis $fm' = 0$.

(2) Let M be a rigid and principally projective module. Assume that $fm = 0$ for $f \in S$ and $m \in M$. Then there exists $e^2 = e \in S$ such that $l_S(mR) = Se$. Since e is central in S, $fe = ef = f$ and $eg = gf$ for each $g \in S$ and $em = 0$. Let $fm' = gm \in fM \cap Sm$. Multiply $fm' = gm$ by e from the left to obtain $efm' = fm' = gem = 0$. Therefore M is a reduced module.

(3) Let M be a Rickart and rigid module. Assume that $fm = 0$ for $f \in S$ and $m \in M$. Then there exists $e^2 = e \in S$ such that $r_M(f) = eM$. Since e is central in S, $fe = ef = 0$ and $m = em$. Let $fm' = gm \in fM \cap Sm$. We multiply $fm' = gm$ from the left by e to obtain $efm' = fem' = egm = gem = gm = 0$. Therefore M is a reduced module. \qed

There are semicommutative modules which are neither rigid nor principally projective.

Example 3.3. Consider the ring

$$R = \left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \mid a, b \in \mathbb{Z} \right\}$$

and the right R-module

$$M = \left\{ \begin{bmatrix} 0 & a \\ a & b \end{bmatrix} \mid a, b \in \mathbb{Z} \right\}.$$

Let $f \in S$ and $f \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & c \\ c & d \end{bmatrix}$. Multiplying the latter by $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ we have $f \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & a \end{bmatrix}$. For any $\begin{bmatrix} 0 & a \\ a & b \end{bmatrix} \in M$, $f \begin{bmatrix} 0 & a \\ a & b \end{bmatrix} = \begin{bmatrix} 0 & ac \\ ac & ad + bc \end{bmatrix}$.

Similarly, let $g \in S$ and $g \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & c' \\ c' & d' \end{bmatrix}$. Then $g \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & c' \end{bmatrix}$.

For any \([0\ a\ a\ b]\in M\), \(g\left[\begin{array}{c}0\
\a\
\a\
\a\
\b\end{array}\right]=\left[\begin{array}{c}0\ ac'\ ac\ ad'\ adc\ adc'\ bcc\ end{array}\right]\). Then it is easy to check that for any \([0\ a\ a\ b]\in M\),

\[fg\left[\begin{array}{c}0\
\a\
\a\
\a\
\b\end{array}\right]=f\left[\begin{array}{c}0\ ac'\ ac\ ad'\ adc\ adc'\ bcc\ end{array}\right]=\left[\begin{array}{c}0\ ac'\ ac\ ad'\ adc\ adc'\ bcc\ end{array}\right]\]

and

\[gf\left[\begin{array}{c}0\
\a\
\a\
\a\
\b\end{array}\right]=g\left[\begin{array}{c}0\ ac'\ ac\ ad'\ adc\ adc'\ bcc\ end{array}\right]=\left[\begin{array}{c}0\ ac'\ ac\ ad'\ adc\ adc'\ bcc\ end{array}\right].\]

Hence \(fg=gf\) for all \(f,\ g\in S\). Therefore \(S\) is commutative and so \(M\) is semicommutative. Define \(f\in S\) by \(f\left[\begin{array}{c}0\
\a\
\a\
\a\
\b\end{array}\right]=\left[\begin{array}{c}0\ 0\ 0\ 0\ end{array}\right]\) where \([0\ a\ a\ b]\in M\). Then \(f\left[\begin{array}{c}0\
1\
1\
1\end{array}\right]=\left[\begin{array}{c}0\ 0\ 0\ 0\ end{array}\right]\) and \(f^2\left[\begin{array}{c}0\
1\
1\
1\end{array}\right]=0\). Hence \(M\) is not rigid. Let \(m=\left[\begin{array}{c}0\ 0\ 0\ 0\ end{array}\right]\), then \(l_S(m)\neq 0\) since the endomorphism \(f\) defined preceding belongs to \(l_S(m)\). \(M\) is indecomposable as a right \(R\)-module, therefore \(S\) does not have any idempotents other than zero and identity. Hence \(l_S(m)\) can not be generated by an idempotent as a left ideal of \(S\).

An \(R\)-module \(M\) is called \textit{Hopfian} provided every surjective endomorphism of \(M\) is an isomorphism. For example, every Noetherian module is Hopfian (see [9, Lemma 11.6]).

Theorem 3.1. Let \(T\) be a ring and \(M\) a left \(T\)-module. If \(t\in T\) satisfies \(M=tM\) and \(M\) is rigid over \(T\), then \(tm=0\) implies \(m=0\) for any \(m\in M\).

Proof. Let \(m\in M\) with \(tm=0\). Since \(M=tM\), there exists \(u\in M\) such that \(m=tu\). Then \(0=tm=t^2u\). It implies \(tu=0\) by hypothesis. Hence \(m=0\). \(\square\)

Corollary 3.4. Let \(M\) be an \(R\)-module with \(S=\text{End}_R(M)\). If \(M\) is rigid, then \(M_R\) is Hopfian.

Proof. It is clear from Theorem 3.1. \(\square\)

A right \(R\)-module \(M\) is said to be \textit{nonsingular} if for any \(m\in M\), \(mE=0\) for an essential right ideal \(E\) of \(R\) implies \(m=0\), and \(M\) is called \textit{cononsingular} if each submodule \(N\) of \(M\) with \(r_R(N)=\{r\in R\mid Nr=0\}\neq 0\) is essential in \(M\). In [4], a module \(M\) is said to be \textit{\(K\)-nonsingular} if for every \(\varphi\in S\), \(\text{Ker}\varphi\) is essential in \(M\) implies \(\varphi=0\). Also the module \(M\) is said to be \textit{\(K\)-cononsingular} if for every submodule \(N\) of \(M\), \(\varphi N\neq 0\) for all \(0\neq \varphi\in S\) implies \(N\) is essential in \(M\).

Proposition 3.5. Let \(M\) be an \(R\)-module with \(S=\text{End}_R(M)\). If \(M\) is a rigid module, then \(M\) is a \(K\)-nonsingular module.
Proof. Let \(f \in S \). Assume that \(\text{Ker} f \) is an essential submodule of \(M \). Since \(M \) is rigid, \(\text{Ker} f \cap \text{Im} f = 0 \). Then \(\text{Im} f = 0 \) and so \(f = 0 \). Hence \(M \) is \(\mathcal{K} \)-nonsingular.

Corollary 3.6. Let \(M \) be an \(R \)-module with \(S = \text{End}_R(M) \). If \(M \) is a reduced module, then \(M \) is \(\mathcal{K} \)-nonsingular.

Example 3.7 shows that the converse statement of Corollary 3.6 need not be true in general. There exists a \(\mathcal{K} \)-nonsingular module which is neither reduced nor \(\mathcal{K} \)-cononsingular.

Example 3.7. Let \(M \) denote the \(\mathbb{Z} \)-module \(\mathbb{Z} \oplus \mathbb{Q} \). We show that for any \(f \in S \) with \(\text{Ker} f \) essential in \(M \) we have \(f = 0 \). Since \(S \) is isomorphic to the ring

\[
\left\{ \begin{bmatrix} a & 0 \\ b & c \end{bmatrix} \mid a \in \mathbb{Z}, b, c \in \mathbb{Q} \right\},
\]

we may assume \(S \) as this ring. We write the elements of \(S \) as matrices and the elements of \(\mathbb{Z} \oplus \mathbb{Q} \) as \(2 \times 1 \) columns. Let

\[
f = \begin{bmatrix} a & 0 \\ b & c \end{bmatrix} \in S
\]

and \(m = \begin{bmatrix} n \\ q \end{bmatrix}, a, n \in \mathbb{Z} \) and \(b, c \in \mathbb{Q} \) with \(fm = 0 \). Then we have \(an = 0 \), \(bn + cq = 0 \). Assume that \(\text{Ker} f \) is essential in \(M \). Then \(\text{Ker} f \cap (\mathbb{Z} \oplus 0) \neq 0 \).

There exists \(m \in \text{Ker} f \) such that \(n \) is nonzero and \(an = 0 \) and \(bn = 0 \). Hence \(a = b = 0 \). Similarly, \(\text{Ker} f \cap ((0) \oplus \mathbb{Q}) \neq 0 \). We may find \(m' = \begin{bmatrix} 0 \\ q' \end{bmatrix} \in \text{Ker} f \) such that \(q' \) is nonzero. So \(cq' = 0 \) and then \(c = 0 \). It follows \(f = 0 \) and \(M \) is \(\mathcal{K} \)-nonsingular.

Let \(f = \begin{bmatrix} 0 & 0 \\ 2 & -1 \end{bmatrix} \in S \) and \(m = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \). Then \(fm = 0 \). Let

\[
g = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} \in S \text{ and } m' = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.
\]

Then \(fm' = gm \in fM \cap Sm \neq 0 \). Therefore \(M \) is not reduced. Let \(N = (1, 1/2)\mathbb{Z} + (1, 1/3)\mathbb{Z} \). Then \(N \) is not essential in \(M \). If \(\begin{bmatrix} a & 0 \\ b & c \end{bmatrix} \in l_S(N) \), then \(\begin{bmatrix} a & 0 \\ b & c \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1/2 & 1 \\ 1/3 \end{bmatrix} = 0 \) implies \(a = 0 \) and \(b + c/2 = 0, b + c/3 = 0 \). It follows that \(a = 0, b = 0 \) and \(c = 0 \). Hence \(M \) is not \(\mathcal{K} \)-cononsingular.

The proof of Theorem 3.2 is clear from Rizvi and Roman [3] Theorem 2.12]. We give a proof for the sake of completeness.

Theorem 3.2. Let \(M \) be an \(R \)-module with \(S = \text{End}_R(M) \). If \(M \) is a rigid and extending module, then it is Baer and \(\mathcal{K} \)-cononsingular.

Proof. If \(M \) is a rigid module, from Proposition 3.5 \(M \) is a \(\mathcal{K} \)-nonsingular module. Since a \(\mathcal{K} \)-nonsingular and extending module is a Baer module by [4] Theorem 2.12], \(M \) is Baer. Let \(N \) be a submodule of \(M \) with \(l_S(N) = 0 \). We claim \(N \) is essential in \(M \). We may find a direct summand \(K \) of \(M \) so that \(N \) is an essential submodule of \(K \). Let \(M = K \oplus L \) and \(\pi_L \) denote the canonical projection from \(M \) onto \(L \). Then \(\pi_L(N) = 0 \). Hence \(\pi_L \in l_S(N) \). Thus \(\pi_L = 0 \) and so \(L = 0 \), \(M = K \) and \(N \) is essential in \(M \).
Corollary 3.8. Let M be an R-module with $S = \text{End}_R(M)$. If M is a reduced and extending module, then M is Baer and K-cononsingular.

Corollary 3.9. Let M be an R-module with $S = \text{End}_R(M)$. If M is a rigid and extending module, then M is a Rickart module.

Proof. It is clear from Theorem 3.2 since Baer modules are Rickart modules. \hfill \Box

Corollary 3.10. Let M be an R-module with $S = \text{End}_R(M)$. If M is a reduced and extending module, then M is a Baer module.

In the following result we give the relations between principally projective modules, reduced modules, semicommutative modules, abelian modules and rigid modules.

Theorem 3.3. Let M be an R-module with $S = \text{End}_R(M)$. If M is a principally projective module, then the following conditions are equivalent.
1. M is a reduced module.
2. M is a semicommutative module.
3. M is an abelian module.
4. M is a rigid module.
5. S is a reduced ring.

Proof. (1) ⇔ (2) Clear from Lemma 3.2.
(2) ⇒ (3) Clear from Remark 2.9.
(3) ⇒ (2) Let $f \in S$, $m \in M$ with $fm = 0$. There exists $e^2 = e \in S$ such that $l_S(m) = Se$. Then $f = ef = fe$, $em = 0$ and e is central in S. So $0 = em = Sem = fSem = feSm = fSm$. Hence M is semicommutative.
(3) ⇒ (4) Let $f^2m = 0$ for $f \in S$, $m \in M$. For some $e^2 = e \in S$ we have $f \in l_S(fm) = Se$. Then $fe = f$ and $efm = 0$. By hypothesis, $efm = fem$. Hence $0 = efm = fem = fm$. So M is rigid.
(4) ⇒ (3) Let $e^2 = e \in S$. For any $f \in S$, $(ef - efe)^2m = 0$ for all $m \in M$ since $(ef - efe)^2 = 0$. We have $(ef - efe)m = 0$ for all $m \in M$ by hypothesis. Hence $ef = efe = 0$. Similarly, $(fe - efe)^2m = 0$ for all $m \in M$ implies $fe - efe = 0$. It follows that $ef = fe = efe$ and so S is abelian, therefore M is abelian.
(1) ⇒ (5) It follows from Lemma 2.4.
(5) ⇒ (1) Let $f \in S$ and $m \in M$ with $fm = 0$. Assume that $fm = 0$. There exists $e^2 = e \in S$ such that $f \in l_S(m) = Se$. Then $em = 0$, $f = fe$. By hypothesis, e is a central idempotent in S. Hence $f = fe = ef$. Let $fm' = gm \in fM \cap Sm$. Then $fm' = efm' = egm = gem = 0$. It follows that $fM \cap Sm = 0$ and (1) holds. \hfill \Box
References

(Received 8 February 2013)
(Accepted 24 March 2014)