Homomorphisms and Derivations in Lie JC*-Algebras

Javad Shokri¹, Ali Ebadian and Rasoul Aghalary

Department of Mathematics, Urmia University
P.O.Box 165, Urmia, Iran
e-mail: j.shokri@urmia.ac.ir (J. Shokri)
a.ebadian@urmia.ac.ir (A. Ebadian)
r.aghalary@urmia.ac.ir (R. Aghalary)

Abstract: We investigate isomorphisms between JC*-algebras, homomorphisms between Lie JC*-algebras and derivations on Lie JC*-algebras associated with the functional inequality \[|f(x + y + z) - f(x) - 2f(y)| \leq |f(x + y + z)|. \]

Keywords: Lie JC*-algebra homomorphism; Lie JC*-algebra derivation; JC*-algebra isomorphism; functional inequality.

2010 Mathematics Subject Classification: 17B40; 39B52; 46L05; 17A36.

1 Introduction

The original motivation to introduce the class of nonassociative algebras known as Jordan algebras came from quantum mechanics (see [1]). Let \(L(H) \) be the real vector space of all bounded self-adjoint linear operators on \(H \), interpreted as the (bounded) observables of the system. In 1932, Jordan observed that \(L(H) \) is the (nonassociative) algebra via the anticommutator product \(x \circ y := \frac{x + y + z}{2} \). A commutative algebra \(X \) with product \(x \circ y \) is called a Jordan algebra. A Jordan C*-subalgebra of a C*-algebra, endowed with the anticommutator product, is called a JC*-algebra.

A C*-algebra \(C \), endowed with the Lie product \([x, y] = \frac{x + y}{2} \) on \(C \), is called a Lie C*-algebra. A C*-algebra \(C \), endowed with the Lie product \([\cdot, \cdot] \) and the

¹Corresponding author.

Copyright © 2014 by the Mathematical Association of Thailand. All rights reserved.
anticommutator product \circ, is called a Lie JC^*-algebra if (C, \circ) is a JC^*-algebra and $(C, [,])$ is a Lie C^*-algebra (see [2, 3, 4]). During the last decades several Lie theory arguments related to functional equations and functional inequalities have been investigated by a number of mathematicians; cf. [5, 6, 7, 8] and references therein.

In this paper we study Lie JC^*-algebra homomorphisms in Lie JC^*-algebras. Our results generalize the JC^*-algebra isomorphisms posed by Park, An and Cui [9] in JC^*-algebras. Moreover, we present the Lie JC^*-algebras derivations on Lie JC^*-algebras associated by the following functional inequality

$$\left\| f\left(\frac{x-y}{2} + z\right) - f(x) - 2f(z) \right\| \leq \left\| f\left(\frac{x+y}{2} + z\right) \right\|.$$ \hspace{1cm} (1.1)

\section{Homomorphisms between Lie JC^*-algebras and Isomorphisms in JC^*-algebras}

At the first of this section we would like to investigate Lie JC^*-algebra homomorphisms between two Lie JC^*-algebras and then, as corollaries, result JC^*-algebra isomorphisms between two JC^*-algebras associated with the functional inequality (1.1). Throughout this section, assume that A and B are two Lie JC^*-algebras respectively with norm $\| \cdot \|_A$ and $\| \cdot \|_B$, and also assume that X and Y are two JC^*-algebra respectively with norm $\| \cdot \|_X$ and $\| \cdot \|_Y$. First we need the following proposition.

\textbf{Definition 2.1.} [10] A \mathbb{C}-linear mapping $H : A \to B$ is called a Lie JC^*-algebra homomorphism if H satisfies

$$H(x \circ y) = H(x) \circ H(y),$$

$$H([x,y]) = [H(x), H(y)],$$

$$H(x^*) = H(x)^*$$

for all $x, y \in A$.

\textbf{Definition 2.2.} [10, 11] For two JC^*-algebras A and B, a bijective \mathbb{C}-linear mapping $H : A \to B$ is called a Lie JC^*-algebra isomorphism if H satisfies

$$H(x \circ y) = H(x) \circ H(y),$$

for all $x, y \in A$.

\textbf{Proposition 2.3.} Suppose $f : A \to B$ be a mapping such that

$$\| f\left(\frac{x-y}{2} + z\right) - f(x) - 2f(z) \|_B \leq \| f\left(\frac{x+y}{2} + z\right) \|_B$$ \hspace{1cm} (2.1)

for all $x, y, z \in A$. Then f is Cauchy additive.
Proof. Assume that \(x = y = z = 0 \) in (2.1), we get
\[
\| -2f(0) \|_B \leq \| f(0) \|_B,
\]
so \(f(0) = 0 \).

Let \(y = x, z = -x \) in (2.1), it follows that
\[
\| f(-x) - f(x) - 2f(-x) \|_B = \| f(x) - f(-x) \|_B \leq \| f(0) \|_B = 0
\]
for all \(x \in A \). Hence \(f(-x) = -f(x) \) for all \(x \in A \).

Let us suppose \(x = 0, y = -2z \) in (2.1), we get
\[
\| f(2z) - 2f(z) \|_B \leq \| f(0) \|_B = 0
\]
for all \(z \in A \). Thus \(f(2z) = 2f(z) \) for all \(z \in A \).

Let \(z = -\frac{2y}{x+y} \) in (2.1), it follows that
\[
\| f(-y) - f(x) - 2f(-\frac{x+y}{2}) \|_B = \| f(y) - f(x) + f(x+y) \|_B \leq \| f(0) \|_B = 0
\]
for all \(x, y \in A \), which this proves that
\[
f(x+y) = f(x) + f(y)
\]
for all \(x, y \in A \) and so that \(f \) is Cauchy additive.

\(\square \)

Theorem 2.1. Suppose \(r \neq 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : A \to B \) be a mapping such that
\[
\| f\left(\frac{\mu x - y}{2} + z\right) - \mu f(x) - 2f(z) \|_B \leq \| f\left(\frac{\mu x + y}{2} + z\right) \|_B, \tag{2.2}
\]
\[
\| f([x, y]) - [f(x), f(y)] \|_B \leq \theta(\|x\|_A^2 + \|y\|_B^2), \tag{2.3}
\]
\[
\| f(x \circ y) - f(x) \circ f(y) \|_B \leq \theta(\|x\|_A^2 + \|y\|_B^2), \tag{2.4}
\]
\[
\| f(x^*) - f(x)^* \|_B \leq \theta(\|x\|_A^2 + \|x\|_A^2), \tag{2.5}
\]
for all \(\mu \in T^1 := \{ \lambda \in C : \|\lambda\| = 1 \} \) and all \(x, y, z \in A \). Then the mapping \(f : A \to B \) is a Lie \(JC^* \)-algebra homomorphism.

Proof. Assume \(r < 1 \).

Suppose \(\mu = 1 \) in (2.2), then by Proposition 2.3, implies the mapping \(f : A \to B \) is a Cauchy additive. So \(f(0) = 0 \). Assume \(y = -\mu x \) and \(z = 0 \) in (2.2), so that
\[
\| f(\mu x) - \mu f(x) \|_B \leq \| f(0) \|_B = 0
\]
for all \(x \in A \) and all \(\mu \in T^1 \). Therefore it is concluded that \(f(\mu x) = \mu f(x) \) for all \(x \in A \) and all \(\mu \in T^1 \). Now by Theorem 2.1 of [12], the mapping \(f \) is a \(C \)-linear. So one can consider \(f(x) = \lim_{n \to \infty} \frac{1}{2\pi} f(2^n x) \) for all \(x \in A \).
It follows from (2.3) that
\[\| f([x, y]) - [f(x), f(y)] \|_B = \lim_{n \to \infty} \frac{1}{4^n} \| f(2^n x, 2^n y) - [f(2^n x), f(2^n y)] \|_B \]
\[\leq \lim_{n \to \infty} \frac{4^n r \theta}{4^n} (\| x \|_A^r + \| y \|_A^r) = 0 \]
for all \(x, y \in \mathcal{A} \), which proves
\[f([x, y]) = [f(x), f(y)], \]
for all \(x, y \in \mathcal{A} \).

It follows from (2.4) that
\[\| f(x \circ y) - f(x) \circ f(y) \|_B = \lim_{n \to \infty} \frac{1}{4^n} \| f(2^n x \circ 2^n y) - f(2^n x) \circ f(2^n y) \|_B \]
\[\leq \lim_{n \to \infty} \frac{4^n r \theta}{4^n} (\| x \|_A^r + \| y \|_A^r) = 0 \]
for all \(x, y \in \mathcal{A} \). Then we obtain
\[f(x \circ y) = f(x) \circ f(y) \]
for all \(x, y \in \mathcal{A} \).

And also from (2.5) is concluded that
\[\| f(x^*) - f(x) \|_B = \lim_{n \to \infty} \frac{1}{2^n} \left\| f\left(2^n x^* \right) - f\left(2^n x \right)^* \right\|_B \]
\[\leq \lim_{n \to \infty} \frac{2^n r \theta}{2^n} (\| x \|_A^r + \| x \|_A^r) \]
for all \(x \in \mathcal{A} \). Thus we proved
\[f(x^*) = f(x)^* \]
for all \(x \in \mathcal{A} \), which this completes the proof. Similarly, one can obtains the result for the case \(r > 1 \).

\[\square \]

Theorem 2.2. Suppose \(r \neq 1 \) and \(\theta \) be nonnegative real numbers, and let \(f : \mathcal{A} \to \mathcal{B} \) be a mapping satisfying (2.2) such that
\[\| f([x, y]) - [f(x), f(y)] \|_B \leq \theta(\| x \|_A^r, \| y \|_B^r), \]
\[\| f(x \circ y) - f(x) \circ f(y) \|_B \leq \theta(\| x \|_A^r, \| y \|_B^r), \]
\[\| f(x^*) - f(x)^* \|_B \leq \theta(\| x \|_A^r, \| x \|_A^r) \]
for all \(x, y, z \in \mathcal{A} \). Then the mapping \(f : \mathcal{A} \to \mathcal{B} \) is a Lie JC*-algebra homomorphism.
Proof. Assume $r > 1$.
By the same reasoning as in the proof of Theorem 2.1, the mapping f is a \mathbb{C}-linear.
So one can consider $f(x) = \lim_{n \to \infty} 2^n f(x/2^n)$ for all $x \in A$.
It follows from (2.6) that
\[
\|f([x, y]) - [f(x), f(y)]\|_B = \lim_{n \to \infty} 4^n \|f([x/2^n, y/2^n]) - [f(x/2^n), f(y/2^n)]\|_B \\
\leq \lim_{n \to \infty} 4^n \theta \left(\|x\|^r_A \cdot \|y\|^r_A\right) = 0
\]
for all $x, y \in A$, which proves
\[
f([x, y]) = [f(x), f(y)],
\]
for all $x, y \in A$.
It follows from (2.7) that
\[
\|f(x \circ y) - f(x) \circ f(y)\|_B = \lim_{n \to \infty} 4^n \|f(x/2^n \circ y/2^n) - f(x/2^n) \circ f(y/2^n)\|_B \\
\leq \lim_{n \to \infty} 4^n \theta \left(\|x\|^r_A \cdot \|y\|^r_A\right) = 0
\]
for all $x, y \in A$. This implies
\[
f(x \circ y) = f(x) \circ f(y),
\]
for all $x, y \in A$.
And also from (2.8) is derived that
\[
\|f(x^*) - f(x)^*\|_B = \lim_{n \to \infty} 2^n \left\|f\left(\frac{x^*}{2^n}\right) - f\left(\frac{x}{2^n}\right)^*\right\|_B \\
\leq \lim_{n \to \infty} \frac{2^n \theta}{2^{nr}} \left(\|x\|^r_A \cdot \|x\|^r_A\right)
\]
for all $x \in A$, and this proves
\[
f(x^*) = f(x)^*
\]
for all $x \in A$. Therefore we conclude $f : A \to B$ is a Lie JC^*-algebra homomorphism. Similarly, one can obtains the result for the case $r < 1$.

Now we investigate JC^*-algebra isomorphisms in the remaining of this section as the results of above Theorems.

Corollary 2.4. Suppose $r \neq 1$ and θ be nonnegative real numbers, and let $f : \mathcal{X} \to \mathcal{Y}$ be a bijective mapping satisfying (2.2) such that
\[
\|f(x \circ y) - f(x) \circ f(y)\|_Y \leq \theta(\|x\|_{\mathcal{X}}^r + \|y\|_{\mathcal{Y}}^r) \tag{2.9}
\]
for all $x, y, z \in \mathcal{X}$. Then the mapping $f : \mathcal{X} \to \mathcal{Y}$ is a JC^*-algebra isomorphism.
Proof. Assume $r > 1$.
Similarly in the proof of Theorem 2.1, the mapping f is a C-linear. So one can consider $f(x) = \lim_{n \to \infty} 2^n f\left(\frac{x}{2^n}\right)$ for all $x \in \mathcal{X}$.

It follows from (2.9) that
\[
\| f(x \circ y) - f(x) \circ f(y) \|_Y = \lim_{n \to \infty} 4^n \| f\left(\frac{x}{2^n} \circ \frac{y}{2^n}\right) - f\left(\frac{x}{2^n}\right) \circ f\left(\frac{y}{2^n}\right) \|_Y \\
\leq \lim_{n \to \infty} \frac{4^n}{4^{nr}} (\|x\|_X^r + \|y\|_X^r) = 0
\]
for all $x, y \in \mathcal{X}$. Thus
\[
f(x \circ y) = f(x) \circ f(y)
\]
for all $x, y \in \mathcal{X}$. Hence the mapping f is a JC^*-algebra isomorphism, as desired. Similarly, one can obtains the result for the case $r < 1$.

Corollary 2.5. Suppose $r \neq 1$ and θ be nonnegative real numbers, and let $f : \mathcal{X} \to \mathcal{Y}$ be a bijective mapping satisfying (2.2) such that
\[
\| f(x \circ y) - f(x) \circ f(y) \|_Y \leq \theta (\|x\|_X^r \cdot \|y\|_X^r)
\]
for all $x, y \in \mathcal{X}$. Then the mapping $f : \mathcal{X} \to \mathcal{Y}$ is a JC^*-algebra isomorphism.

Proof. Assume $r < 1$.
Similarly in the proof of Theorem 2.1, the mapping f is a C-linear. So one can consider $f(x) = \lim_{n \to \infty} 2^n f\left(\frac{x}{2^n}\right)$ for all $x \in \mathcal{X}$.

It follows from (2.10) that
\[
\| f(x \circ y) - f(x) \circ f(y) \|_Y = \lim_{n \to \infty} \frac{1}{4^n} \| f(2^n x \circ 2^n y) - f(2^n x) \circ f(2^n y) \| \\
\leq \lim_{n \to \infty} \frac{4^n \theta}{4^{nr}} (\|x\|_X^r + \|y\|_X^r) = 0
\]
for all $x, y \in \mathcal{X}$. Thus
\[
f(x \circ y) = f(x) \circ f(y)
\]
for all $x, y \in \mathcal{X}$, which this completes the proof of this case. And by same reasons, we obtain the result for the case $r > 1$.

3 Derivations on Lie JC^*-algebras

In this section, we are going to investigate Lie JC^*-algebra derivations on Lie JC^*-algebras associated with the functional inequality (1.1). Throughout this section, assume that A is a Lie JC^*-algebra with norm $\|\|$.
Definition 3.1. [10] A \mathbb{C}-linear mapping $D : A \rightarrow A$ is called a Lie JC*-algebra derivation if D satisfies

$$
D(x \circ y) = (Dx) \circ y + x \circ (Dy),
$$
$$
D([x, y]) = [Dx, y] + [x, Dy],
$$
$$
D(x^*) = D(x)^*
$$

for all $x, y \in A$.

Theorem 3.1. Suppose $r \neq 1$ and θ be nonnegative real numbers, and let $f : A \rightarrow A$ be a mapping satisfying (2.2) and (2.5) such that

$$
\|f([x, y]) - [f(x), y] - [x, f(y)]\| \leq \theta(\|x\|^{2r} + \|y\|^{2r}),
$$

$$
\|f(x \circ y) - f(x) \circ y - x \circ f(y)\| \leq \theta(\|x\|^{2r} + \|y\|^{2r}),
$$

for all $x, y \in A$. Then the mapping $f : A \rightarrow A$ is a Lie JC*-algebra derivation.

Proof. Assume $r > 1$. By the same reasoning as in the proof of Theorem 2.1, the mapping f is a \mathbb{C}-linear. So we can consider $f(x) = \lim_{n \rightarrow \infty} 2^n f\left(\frac{x}{2^n}\right)$ for all $x \in A$.

It follows from (3.1) that

$$
\|f([x, y]) - [f(x), y] - [x, f(y)]\| = \lim_{n \rightarrow \infty} \frac{1}{4^n} \|f([2^n x, 2^n y]) - [f(2^n x), 2^n y] - [2^n x, f(2^n y)]\|
$$

$$
\leq \lim_{n \rightarrow \infty} \frac{4^n \theta}{4^n} (\|x\|^{2r} + \|y\|^{2r}) = 0
$$

for all $x, y \in A$. Therefore we obtain

$$
f([x, y]) = [f(x), y] + [x, f(y)]
$$

for all $x, y \in A$.

It follows from (3.2) that

$$
\|f(x \circ y) - f(x) \circ y - x \circ f(y)\| = \lim_{n \rightarrow \infty} \frac{1}{4^n} \|f(2^n x \circ 2^n y) - f(2^n x) \circ 2^n y - 2^n x \circ f(2^n y)\|
$$

$$
\leq \lim_{n \rightarrow \infty} \frac{4^n \theta}{4^n} (\|x\|^{2r} + \|y\|^{2r}) = 0
$$

for all $x, y \in A$. Then

$$
f(x \circ y) = f(x) \circ y + x \circ f(y)
$$

for all $x, y \in A$. And from (2.5) by the same explanation in the proof of Theorem 2.1 we derive that $f(x^*) = f(x)^*$ for all $x \in A$. Therefore we conclude $f : A \rightarrow A$ is a Lie JC*-algebra derivation. Similarly, by the same arguments, we can obtain the result for the case $r < 1$. ☐
Theorem 3.2. Suppose $r \neq 1$ and θ be nonnegative real numbers, and let $f : \mathcal{A} \to \mathcal{A}$ be a mapping satisfying (2.2) and (2.8) such that

$$
\|f([x, y]) - [f(x), y] - [x, f(y)]\| \leq \theta(\|x\|^{r}, \|y\|^{r}),
$$

(3.3)

$$
\|f(x \circ y) - f(x) \circ y - x \circ f(y)\| \leq \theta(\|x\|^{r}, \|y\|^{r}),
$$

(3.4)

for all $x, y \in \mathcal{A}$. Then the mapping $f : \mathcal{A} \to \mathcal{A}$ is a Lie JC*-algebra derivation.

Proof. Assume $r > 1$.

By the same reasoning as in the proof of Theorem 2.1, the mapping f is a \mathbb{C}-linear. So we can assume $f(x) = \lim_{n \to \infty} 2^{n}f\left(\frac{x}{2^{n}}\right)$ for all $x \in \mathcal{A}$.

It follows from (3.3) that

$$
\|f([x, y]) - [f(x), y] - [x, f(y)]\| = \lim_{n \to \infty} 4^{n}\|f\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right) - [f(x), y] - [x, f(y)]\|
$$

$$
\leq \lim_{n \to \infty} 4^{n} \frac{\theta}{4^{nr}} (\|x\|^{r}, \|y\|^{r}) = 0
$$

for all $x, y \in \mathcal{A}$. Hence

$$
f([x, y]) = [f(x), y] + [x, f(y)]
$$

for all $x, y \in \mathcal{A}$.

It follows from (3.4) that

$$
\|f(x \circ y) - f(x) \circ y - x \circ f(y)\| = \lim_{n \to \infty} 4^{n}\|f\left(\frac{x}{2^{n}} \circ \frac{y}{2^{n}}\right) - f(x) \circ y - x \circ f(y)\|
$$

$$
\leq \lim_{n \to \infty} 4^{n} \frac{\theta}{4^{nr}} (\|x\|^{r}, \|y\|^{r}) = 0
$$

for all $x, y \in \mathcal{A}$. Therefore

$$
f(x \circ y) = f(x) \circ y + x \circ f(y)
$$

for all $x, y \in \mathcal{A}$.

And from (2.8) by the same explanation in the proof of Theorem 2.2 it is obtained that $f(x^{*}) = f(x)^{*}$ for all $x \in \mathcal{A}$. Therefore we conclude $f : \mathcal{A} \to \mathcal{A}$ is a Lie JC*-algebra derivation. Similarly, one can obtains the result for the case $r < 1$.

\[\square\]

References

(Received 19 February 2013)
(Accepted 10 July 2013)