On Modular Difference Sequence Spaces

Parmeshwary Dayal Srivastava and Atanu Manna

Department of Mathematics, Indian Institute of Technology Kharagpur
Kharagpur 721302, West Bengal, India

e-mail : pds@maths.iitkgp.ernet.in (P. D. Srivastava)
atanuiitkgp86@gmail.com (A. Manna)

Abstract : In this paper, using \( m \)-th order difference operator \( \Delta^{(m)} \) and a sequence \( \{ \alpha_n \}_{n=0}^{\infty} \) of strictly positive real numbers, sequence spaces \( \Delta^{(m)}l_\alpha \{ f_n \} = \{ x \in s : (\Delta^{(m)}x)_j \in l_\alpha \{ f_n \} \} \) and \( \Delta^{(m)}l_\alpha \{ g_n \} = \{ x \in s : (\Delta^{(m)}x)_j \in l_\alpha \{ g_n \} \} \) are introduced, where \( x = \{ x_j \}_{j=0}^{\infty} \in s \) and \( \{ f_n \}_{n=0}^{\infty}, \{ g_n \}_{n=0}^{\infty} \) are sequence of Orlicz functions. It is shown that these are separable Banach spaces and dense \( F_\sigma \)-set of the first Baire category in \( s \), the space of all real sequences with the Fréchet metric. Some earlier results related to Baire category are obtained when the sequence \( \{ \alpha_n \}_{n=0}^{\infty} \) is chosen specifically.

Keywords : modular sequence spaces; modular spaces; difference sequence; Baire category.

2010 Mathematics Subject Classification : 46A80; 46A45; 46B45.

1 Introduction

The geometric properties of Banach space such as \( H \)-property, uniform Opial property, rotundity, uniform rotundity etc. are recent interest of study in modular function spaces or modular sequence spaces by many mathematicians and researchers. For example, geometric properties like uniform rotundity, uniform Opial property, \( H \)-property were discussed by Kamińska [1], Manna and Srivastava [2], Mongkolkeha and Kumam [3,4], Cui and Hudzik [5] and many others. Similarly, the Baire category results on modular sequence spaces have received attention in some of the recent papers. In the year of 1980, Šalát [6] shown that

---

1Corresponding author.

Copyright © 2018 by the Mathematical Association of Thailand. All rights reserved.
the sequence space $l_q$ is a set of the first Baire category in $l_r$, where $1 \leq q < r$. In 1973, Woo [7] introduced and studied the modular sequence spaces. Šalát & Ewert [8] further extended the result of Šalát [6] to modular sequence spaces. The theory of difference sequence spaces was first introduced and studied by Kizmaz [9]. The results of Kizmaz were generalized to $m$-th order difference sequence spaces by Malkowsky & Parashar [10]. In the present paper, an attempt has been made to introduce and study the modular difference sequence spaces $\Delta^{(m)}l_\alpha\{f_n\}$ and $\Delta^{(m)}l_\alpha\{g_n\}$ defined by using $m$-th order difference operator and a sequence $\{\alpha_n\}_{n=0}^\infty$ of strictly positive real numbers.

2 Preliminaries

Let $X$ be a real vector space. A functional $\varrho : X \to [0, \infty]$ is said to be a convex modular if for arbitrary $x, y \in X$, the following conditions hold:
(i) $\varrho(x) = 0$ if and only if $x = 0$,
(ii) $\varrho(-x) = \varrho(x)$,
(iii) $\varrho(\alpha x + \beta y) \leq \alpha \varrho(x) + \beta \varrho(y)$ for $x, y \in X, \alpha, \beta \geq 0, \alpha + \beta = 1$.

The set $X_\varrho = \{x \in X : \varrho(\lambda x) < \infty, \text{for some } \lambda > 0\}$ is a linear subspace of a real vector space $X$ and it is called modular space determined by $\varrho$. The relation

$$\|x\| = \inf \left\{ \lambda > 0 : \varrho(\frac{x}{\lambda}) \leq 1 \right\}$$

defines a norm on $X_\varrho[11,12]$.

A function $f : [0, \infty) \to [0, \infty)$ is said to be an Orlicz function if it is continuous, non decreasing, convex and $f(0) = 0$ and $\lim_{x \to \infty} f(x) = \infty$. If $f(x) = 0$ for some $x > 0$, then $f$ is said to be a degenerate Orlicz function. Orlicz functions, which are not degenerate called non-degenerate.

Remark 2.1. An Orlicz function can be represented as $f(x) = \int_0^x p(t)dt$, where $p(t)$ is called the kernel of $f$ having the properties $p(0) = 0, p(t) \to \infty$ as $t \to \infty$ & is right differentiable for $t \geq 0$.

A sequence space $\lambda$ with a linear topology is called a $K$-space if each of the projection maps $P_i : \lambda \to \mathbb{K}$, given by $P_i(x) = x_i, i \geq 1$ is continuous where $\mathbb{K} = \mathbb{R}$ or $\mathbb{C}$ [13].

Let $w$ be the class of all real sequences. For a sequence $\{f_n\}_{n=0}^\infty$ of Orlicz functions, the modular sequence space is defined as below:

$$l_\{f_n\} = \left\{ x \in w : \sum_{n=0}^\infty f_n\left(\frac{|x_n|}{\lambda}\right) < \infty, \text{for some } \lambda > 0 \right\}.$$ 

This is a Banach space with respect to the norm $\|\|_{l_\{f_n\}}$ defined as follows:
On Modular Difference Sequence Spaces

\[ \|x\|_{l(f_n)} = \inf \left\{ \lambda > 0 : \sum_{n=0}^{\infty} f_n \left( \frac{|x_n|}{\lambda} \right) \leq 1 \right\}. \]

These spaces were introduced and studied by Woo [7].

For an arbitrary positive integer \( m \), the operators \( \Delta^{(m)}, \Sigma^{(m)} : s \to s \) are continuous, linear and defined by

\[ \Delta^{(1)} x_k = \xi_{k-1}, \quad (\Sigma^{(1)} x)_k = \sum_{j=0}^{k} \xi_j, \quad k = 0, 1, 2, \ldots \]

\[ \Delta^{(m)} = \Delta^{(1)} \circ \Delta^{(m-1)}, \quad \Sigma^{(m)} = \Sigma^{(1)} \circ \Sigma^{(m-1)}. \]

Also \( \Sigma^{(m)} \circ \Delta^{(m)} = \Delta^{(m)} \circ \Sigma^{(m)} = id \), the identity on \( s \).

In general, the \( m \)-th order difference sequence space \( (\Delta^{(m)} x)_k \) & its inverse \( (\Sigma^{(m)} x)_k \) is defined by the finite sum given below:

\[ (\Delta^{(m)} x)_k = \sum_{i=0}^{m} (-1)^i \binom{m}{i} \xi_{k-i} \quad \& \quad (\Sigma^{(m)} x)_k = \sum_{i=0}^{k} \binom{m + k - i - 1}{k - i} \xi_i \]

respectively, with all negative indices are assumed to be zero [10].

Malkowsky and Parashar [10] defined and studied the sequence spaces

\[ \Delta^{(m)}(X) = \{ x = (\xi_k) : (\Delta^{(m)} x)_k \in X \} \]

for sequence spaces \( X = l_\infty, c_0, c. \)

Let \( s \) be the linear space of all real sequences with the Fréchet metric \( d \) defined by

\[ d(x, y) = \sum_{j=0}^{\infty} \frac{1}{2^j} \frac{|\xi_j - \eta_j|}{1 + |\xi_j - \eta_j|} \]

where \( x = \{\xi_j\}_{j=0}^{\infty} \in s \) and \( y = \{\eta_j\}_{j=0}^{\infty} \in s \).

**Definition 2.2.** [14] A sequence \( \{f_n\}_{n=0}^{\infty} \) of Orlicz functions is said to satisfy uniform \( \Delta_2 \)-condition if there exists \( K > 0 \) and an integer \( n_0 \) such that, for all \( n \geq n_0 \) we have \( \frac{f_n(2t)}{f_n(t)} \leq K \) for each \( t \in (0, \frac{1}{2}] \).

**Lemma 2.3.** [7] Corollary 3.3. If \( \{f_n\}_{n=0}^{\infty} \) satisfies uniform \( \Delta_2 \)-condition, then \( \sum_{n=0}^{\infty} f_n(|x_n|) < \infty \) implies \( \lim_{n \to \infty} x_n = 0. \)

### 3 Modular Difference Sequence Spaces \( \Delta^{(m)} l_\alpha \{f_n\} \) and \( \Delta^{(m)} l^\alpha \{g_n\} \)

Let \( \{f_n\}_{n=0}^{\infty} \) be a sequence of Orlicz functions and \( \{\alpha_n\}_{n=0}^{\infty} \) be a sequence of strictly positive real numbers. The following sequence spaces \( l_\alpha \{f_n\} \) and \( l^\alpha \{g_n\} \) are defined as
Since \( \Delta \) defined as follows:

\[ \text{Then it is easy to verify that } \]

\[ \Delta \]

\[ \text{in a similar way, the modular difference sequence spaces } \Delta \]

\[ \text{equipped with the norm } \]

\[ \| \]

\[ \text{and } \]

\[ \| \]

\[ \text{Construct a functional } \varrho_{\alpha, \Delta(m)} \text{ defined on } s \text{ as } \varrho_{\alpha, \Delta(m)}(x) = \sum_{k=0}^{\infty} f_k \left( \frac{\Delta^{(m)}(x)}{\lambda k} \right). \]

\[ \text{Then it is easy to verify that } \varrho_{\alpha, \Delta(m)} \text{ satisfies all the properties of a convex modular.} \]

\[ \text{Now for each } x = \{\xi_k\}_{k=0}^{\infty} \in s \text{ the sequence spaces } \Delta^{(m)}l_{\alpha} \{f_n\} \text{ & } \Delta^{(m)}h_{\alpha} \{f_n\} \text{ are defined as follows:} \]

\[ \Delta^{(m)}l_{\alpha} \{f_n\} = \{ x \in s : (\Delta^{(m)}x)_k \in l_{\alpha} \{f_n\} \} \text{ or equivalently} \]

\[ \Delta^{(m)}l_{\alpha} \{f_n\} = \{ x \in s : \varrho_{\alpha, \Delta(m)}(\xi_k) < \infty \text{ for some } \lambda > 0 \} \]

\[ \text{and} \]

\[ \Delta^{(m)}h_{\alpha} \{f_n\} = \{ x \in s : \varrho_{\alpha, \Delta(m)}(\xi_k) < \infty \text{ for all } \lambda > 0 \}. \]

\[ \text{Then } \Delta^{(m)}l_{\alpha} \{f_n\} \text{ is a modular space determined by } \varrho_{\alpha, \Delta(m)} \text{ and it will be called as modular difference sequence space. For } x \in \Delta^{(m)}l_{\alpha} \{f_n\}, \text{ the corresponding norm is defined as} \]

\[ \| x \|_{\alpha, \Delta(m)} = \inf \left\{ \lambda > 0 : \varrho_{\alpha, \Delta(m)}(\xi_k) = \sum_{k=0}^{\infty} f_k \left( \frac{\Delta^{(m)}(x)}{\lambda k} \right) \leq 1 \right\}. \]

\[ \text{Note: Since } (\Delta^{(m)}x)_k = \Delta^{(m)}\xi_k, \text{ so the norm } \| x \|_{\alpha, \Delta(m)} \text{ can also be denoted by } \| (\Delta^{(m)}x)_k \|_{l_{\alpha} \{f_n\}}. \]

\[ \text{In a similar way, the modular difference sequence spaces } \Delta^{(m)}l^{\alpha} \{g_n\} \text{ are defined as} \]

\[ \Delta^{(m)}l^{\alpha} \{g_n\} = \{ x \in s : (\Delta^{(m)}x)_k \in l^{\alpha} \{g_n\} \} \]

\[ \text{equipped with the norm } \| x \|_{\alpha, \Delta(m)}^{\alpha} = \| (\Delta^{(m)}x)_k \|_{l^{\alpha} \{g_n\}}. \]

\[ \text{4 Main Results} \]

\[ \text{In the following theorem, a topological structure of the sequence space } \Delta^{(m)}l_{\alpha} \{f_n\} \text{ has been given.} \]

\[ \text{Theorem 4.1. Let } \{f_n\}_{n=0}^{\infty} \text{ be a sequence of Orlicz functions. Then the followings hold:} \]

\[ \text{(a) } \Delta^{(m)}l_{\alpha} \{f_n\} \text{ is a Banach } K \text{-space endowed with the norm } \| \cdot \|_{\alpha, \Delta(m)}. \]

\[ \text{(b) } \Delta^{(m)}h_{\alpha} \{f_n\} \text{ is a closed subspace of } \Delta^{(m)}l_{\alpha} \{f_n\}. \]

\[ \text{(c) If } \{f_n\}_{n=0}^{\infty} \text{ satisfies uniform } \Delta_2 \text{-condition, then } \Delta^{(m)}l_{\alpha} \{f_n\} = \Delta^{(m)}h_{\alpha} \{f_n\}. \]
Proof. (a) For $x \in \Delta^{(m)}l_\alpha \{f_n\}$, the following norm is defined in Section 3:

$$\|x\|_{\alpha, \Delta^{(m)}} = \inf \left\{ \lambda > 0 : \varrho_{\alpha, \Delta^{(m)}} \left( \frac{x}{\lambda} \right) \leq 1 \right\}.$$ 

To show the completeness of the space, let $x^{(q)} = \{\xi_k^{(q)}\}_{k=0}^\infty$, $q = 0, 1, 2, \ldots$ be a Cauchy sequence in $\Delta^{(m)}l_\alpha \{f_n\}$ and $\epsilon > 0$. Then there exists an $N > 0$ such that for every $\epsilon > 0$ there is an $\lambda_\epsilon$ with $\lambda_\epsilon < \epsilon$, one gets

$$\varrho_{\alpha, \Delta^{(m)}} \left( \frac{x^{(q)} - x^{(r)}}{\lambda_\epsilon} \right) \leq 1 \quad \text{for } q, r \geq N.$$ 

So, by the definition of $\varrho_{\alpha, \Delta^{(m)}}$, one obtains

$$\sum_{k=0}^\infty f_k \left( \frac{\Delta^{(m)}\xi_k^{(q)} - \Delta^{(m)}\xi_k^{(r)}}{\lambda_\epsilon \alpha_k} \right) \leq 1 \quad \text{for } q, r \geq N,$$

which implies that

$$f_k \left( \frac{\Delta^{(m)}\xi_k^{(q)} - \Delta^{(m)}\xi_k^{(r)}}{\lambda_\epsilon \alpha_k} \right) \leq 1 \quad \text{for each } k = 0, 1, 2, \ldots \text{ and for } q, r \geq N.$$ 

Let $p_k$’s be the corresponding kernel of the Orlicz functions $f_k$’s. Now one can choose a constant $s_0 > 0$ and $\gamma > 1$ such that $\gamma \frac{s_0}{2} p_k \left( \frac{s_0}{2} \right) \geq 1$ (easily follows from $f(t) = \int_0^t p(t) dt$ and $s_0 > 0$) for each $k \in \mathbb{N}_0$, the set of natural numbers including 0. The notation $\mathbb{N}_0$ will be used wherever it will appear in the text.

Therefore by using integral representation of Orlicz function, above inequality reduces to

$$|\Delta^{(m)}\xi_k^{(q)} - \Delta^{(m)}\xi_k^{(r)}| \leq \lambda_\epsilon \alpha_k \gamma s_0 \quad \text{for each } k \in \mathbb{N}_0 \text{ and for } q, r \geq N.$$ 

Otherwise, one can find a $k$ with $|\Delta^{(m)}\xi_k^{(q)} - \Delta^{(m)}\xi_k^{(r)}| > \gamma s_0$, so that the following holds:

$$f_k \left( \frac{\Delta^{(m)}\xi_k^{(q)} - \Delta^{(m)}\xi_k^{(r)}}{\lambda_\epsilon \alpha_k} \right) \geq \int_0^{s_0} \frac{|\Delta^{(m)}\xi_k^{(q)} - \Delta^{(m)}\xi_k^{(r)}|}{\lambda_\epsilon \alpha_k} p_k(t) dt > \frac{\gamma s_0}{2} p_k \left( \frac{\gamma s_0}{2} \right) > \frac{\gamma s_0}{2} p_k \left( \frac{s_0}{2} \right)$$

and a contradiction is attained. Therefore for each $k \in \mathbb{N}_0$, $\{\Delta^{(m)}\xi_k^{(r)}\}_{r=0}^\infty$ forms a Cauchy sequence of real numbers and hence converges.

Let $\lim_{r \to \infty} \Delta^{(m)}\xi_k^{(r)} = \Delta^{(m)}\xi_k$. Since $f_k$’s & the operator $\Delta^{(m)}$ are continuous, so from the above inequations, one obtains

$$\sum_{k=0}^\infty f_k \left( \frac{\Delta^{(m)}\xi_k^{(q)} - \Delta^{(m)}\xi_k}{\lambda_\epsilon \alpha_k} \right) \leq 1 \quad \text{for } q \geq N \text{ as } r \to \infty \text{ (keeping } m \text{ fixed)}.$$
which implies \( \|x^{(q)} - x\|_{\alpha, \Delta^{(m)}} \leq \lambda_e < \epsilon \) for \( q \geq N \). To show that \( x \in \Delta^{(m)}l_\alpha \{f_n\} \) for some \( \lambda = 2\lambda_0 > 0 \), consider the following expression:

\[
\sum_{k=0}^{i} f_k \left( \frac{\Delta^{(m)}(\xi_k)}{2\lambda_0 \alpha_k} \right) = \sum_{k=0}^{i} f_k \left( \frac{\Delta^{(m)}(\xi_k - \xi_k^{(q)}) + \xi_k^{(q)}}{2\lambda_0 \alpha_k} \right) \leq \frac{1}{2} \sum_{k=0}^{i} f_k \left( \frac{\Delta^{(m)}(\xi_k - \xi_k^{(q)})}{\lambda_0 \alpha_k} \right) + \frac{1}{2} \sum_{k=0}^{i} f_k \left( \frac{\Delta^{(m)}(\xi_k^{(q)})}{\lambda_0 \alpha_k} \right). \tag{4.1}
\]

Using the continuity of the operator \( \Delta^{(m)} \) one may choose a \( \delta > 0 \) with \( |\xi_k^{(q)} - \xi_k| < \delta \) such that for each \( k = 0, 1, 2, \ldots, i \) and for a given \( \epsilon > 0 \) the following holds:

\[
|\Delta^{(m)}(\xi_k^{(q)}) - \Delta^{(m)}(\xi_k)| < \frac{\epsilon \alpha_0 \alpha_k f_k^{-1}(1)}{\lambda_0 \alpha_k}. \]

Applying the nondecreasing property of \( f_k \)'s, one gets

\[
\sum_{k=0}^{i} f_k \left( \frac{\Delta^{(m)}(\xi_k^{(q)} - \xi_k)}{\lambda_0 \alpha_k} \right) < \epsilon \sum_{k=0}^{i} \frac{1}{2(k+1)}. \tag{4.2}
\]

Since \( x^{(q)} \in \Delta^{(m)}l_\alpha \{f_n\} \) choosing \( i \to \infty \) in Eqn. (4.1) & Eqn. (4.2), it follows that \( \sum_{k=0}^{\infty} f_k \left( \frac{\Delta^{(m)}(\xi_k)}{2\lambda_0 \alpha_k} \right) < \infty \), i.e., \( x \in \Delta^{(m)}l_\alpha \{f_n\} \). Hence \( \Delta^{(m)}l_\alpha \{f_n\} \) is a Banach space.

Now the space \( \Delta^{(m)}l_\alpha \{f_n\} \) is a \( K \) space will be presented next. Choose \( x^{(q)} \to x \) in the norm \( \|\cdot\|_{\alpha, \Delta^{(m)}} \) for large \( q \). Then by definition of \( \|\cdot\|_{\alpha, \Delta^{(m)}} \), for every \( \epsilon > 0 \) there exists a natural number \( q_0 \) such that

\[
\|x^{(q)} - x\|_{\alpha, \Delta^{(m)}} = \inf \left\{ \lambda > 0 : \sum_{k=0}^{\infty} f_k \left( \frac{\Delta^{(m)}(\xi_k^{(q)} - \xi_k)}{\lambda \alpha_k} \right) \leq 1 \right\} < \epsilon \quad \text{for} \quad q \geq q_0,
\]

i.e., \( x^{(q)} - x \to 0 \) as \( q \to \infty \) in the norm \( \|\cdot\|_{\alpha, \Delta^{(m)}} \), i.e, \( \epsilon \to 0 \) as \( q \to \infty \). Using the similar techniques used as above, there exists a \( \lambda_e \) with \( \lambda_e < \epsilon \) such that

\[
|\Delta^{(m)}(\xi_k^{(q)} - \xi_k)| \leq \lambda_e \alpha_k \gamma_{q_0} \quad \text{for} \quad q \geq q_0 \quad \text{and for} \quad k \in \mathbb{N}_0,
\]

which gives \( |\Delta^{(m)}(\xi_k^{(q)} - \xi_k)| \to 0 \) as \( q \to \infty \), which in turn implies that \( \{\xi_k^{(q)} - \xi_k\} \in \Delta^{(m)}c_0 \) for each \( k \in \mathbb{N}_0 \).

It is known that \( \Delta^{(m)}c_0 \) is isometrically isomorphic to \( c_0 \), which can be viewed by the mapping \( T : \Delta^{(m)}c_0 \to c_0 \) defined by \( Tx = \Delta^{(m)}x \) with the norm defined by \( \|x\|_{\Delta^{(m)}c_0} = \sup_k |\Delta^{(m)}(\xi_k)|, \) where \( x = \{\xi_k\}_{k=0}^{\infty} \). Hence \( \Delta^{(m)}l_\alpha \{f_n\} \) is a \( K \)-space.

(b) It is clear that \( \Delta^{(m)}h_\alpha \{f_n\} \) is a subspace of \( \Delta^{(m)}l_\alpha \{f_n\} \). Let for each \( i \in \mathbb{N}_0, \)

\[
x^{(i)} = \{\xi_k^{(j)}\}_{k=0}^{\infty} \in \Delta^{(m)}h_\alpha \{f_n\}
\]

be a sequence such that \( \lim_{i \to \infty} \|x^{(i)} - x\|_{\alpha, \Delta^{(m)}} = 0 \),
where \( x \in \Delta^{(m)}l_\alpha\{f_n\} \). Let \( \lambda > 0 \) be arbitrary. Corresponding to this \( \lambda \), one can choose a positive integer \( i_0 \) such that \( \|x(i_0) - x\|_{\Delta^{(m)}} < \frac{\lambda}{2} \). Now it follows that

\[
\sum_{k=0}^{\infty} f_k \left( \frac{|\Delta^{(m)}\xi_k|}{\lambda\alpha_k} \right) = \sum_{k=0}^{\infty} f_k \left( \frac{|\Delta^{(m)}(\xi_k^{(i_0)} + \xi_k - \xi_k^{(i_0)})|}{\lambda\alpha_k} \right) \\
\leq \frac{1}{2} \sum_{k=0}^{\infty} f_k \left( \frac{2|\Delta^{(m)}\xi_k^{(i_0)}|}{\lambda\alpha_k} \right) + \frac{1}{2} \sum_{k=0}^{\infty} f_k \left( \frac{|\Delta^{(m)}(\xi_k^{(i_0)} - \xi_k)|}{\lambda\alpha_k} \right)
\]

Thus \( x \in \Delta^{(m)}h_\alpha\{f_n\} \).

(c) Let \( x \in \Delta^{(m)}l_\alpha\{f_n\} \) be a sequence. Then there exists an \( r > 0 \) such that \( \theta_{\alpha,\Delta^{(m)}}(\frac{x}{\lambda}) \) is finite. For an arbitrary \( \lambda \) such that \( \lambda \geq r > 0 \), one gets \( \theta_{\alpha,\Delta^{(m)}}(\frac{x}{\lambda}) \leq \theta_{\alpha,\Delta^{(m)}}(\frac{x}{\frac{\lambda}{2}}) \), which is finite. If \( \lambda < r \), i.e., when \( \frac{\lambda}{2} > 1 \) then one can find an integer \( l \geq 1 \) such that \( r \leq 2^l \lambda \). Now by Lemma 2.3, it follows that \( \lim_{k \to \infty} \frac{\Delta^{(m)}\xi_k}{r\alpha_k} = 0 \). Hence there exist natural numbers \( k_1, k_2 \) and a constant \( K > 0 \) such that

\[
\frac{|\Delta^{(m)}\xi_k|}{r\alpha_k} \leq \frac{1}{2} \quad \text{for all} \quad k \geq k_1
\]

and \( f_k(2t) \leq K f_k(t) \) for all \( k \geq k_2, t \in (0, \frac{1}{2}] \).

Let \( k_0 = \max\{k_1, k_2\} \). Then for \( k \geq k_0 \), one gets

\[
\sum_{k=0}^{\infty} f_k \left( \frac{|\Delta^{(m)}\xi_k|}{\lambda\alpha_k} \right) = \sum_{k=0}^{k_0-1} f_k \left( \frac{|\Delta^{(m)}\xi_k|}{\lambda\alpha_k} \right) + \sum_{k=k_0}^{\infty} f_k \left( \frac{r|\Delta^{(m)}\xi_k|}{\lambda\alpha_k} \right)
\]

\[
\leq \sum_{k=0}^{k_0-1} f_k \left( \frac{|\Delta^{(m)}\xi_k|}{\lambda\alpha_k} \right) + \sum_{k=k_0}^{\infty} f_k \left( 2^l|\Delta^{(m)}\xi_k| \right)
\]

\[
\leq \sum_{k=0}^{k_0-1} f_k \left( \frac{|\Delta^{(m)}\xi_k|}{\lambda\alpha_k} \right) + K^l \sum_{k=k_0}^{\infty} f_k \left( \frac{|\Delta^{(m)}\xi_k|}{r\alpha_k} \right)
\]

that is, \( \theta_{\alpha,\Delta^{(m)}}(\frac{x}{\lambda}) < \infty \) and hence \( x \in \Delta^{(m)}h_\alpha\{f_n\} \). This completes the proof of the theorem. \( \square \)

**Theorem 4.2.** The modular difference sequence space \( \Delta^{(m)}l_\alpha\{g_n\} \) is a BK-space equipped with the norm \( \| \cdot \|_{\Delta^{(m)}}^\alpha \) defined by

\[
\|x\|_{\Delta^{(m)}}^\alpha = \inf \left\{ \lambda > 0 : \sum_{k=0}^{\infty} g_k \left( \frac{\alpha_k|\Delta^{(m)}\xi_k|}{\lambda} \right) \leq 1 \right\}.
\]

**Proof.** The proof runs on the parallel lines of Theorem 4.1 and hence omitted. \( \square \)
Proposition 4.3. Let \( \{f_k\}_{k=0}^{\infty} \) be a sequence of non degenerate Orlicz functions.

(i) If \( \alpha = \{\alpha_k\}_{k=0}^{\infty} \in l_\infty \) and \( \sum_{k=0}^{\infty} f_k \left( \frac{L}{\lambda \alpha_k} \right) < \infty \), \( L = \sup_k |\Delta^{(m)} \xi_k| \) for some \( \lambda > 0 \), then \( \Delta^{(m)} l_\alpha \{f_n\} = \Delta^{(m)} l_\infty \).

(ii) If \( \alpha \in l_p, p \geq 1 \) then \( \Delta^{(m)} l_\alpha \{f_n\} \subset \Delta^{(m)} l_p \). Similarly, if \( \frac{1}{\alpha} \in l_p \) then \( \Delta^{(m)} l_\alpha \{f_n\} \subset \Delta^{(m)} l_p \).

Proof. (i) Let \( x \in \Delta^{(m)} l_\alpha \{f_n\} \) be a sequence. Then by the definition of norm, it follows that
\[
f_k \left( \frac{|\Delta^{(m)} \xi_k|}{\alpha_k} \right) \leq 1 \quad \text{for each } k \in \mathbb{N}_0.
\]

It is known that for each \( k \in \mathbb{N}_0 \), there is a constant \( s_0 > 0 \) and \( \gamma > 1 \) such that \( \gamma \frac{1}{\alpha} \in ps_k \left( \frac{1}{\gamma} \right) \geq 1 \) holds. Using it and the integral representation of Orlicz function, one gets
\[
|\Delta^{(m)} \xi_k| \leq \alpha_k \gamma s_0 \|x\|_{\alpha, \Delta^{(m)}}.
\]

Since \( \alpha \in l_\infty \), so the above implies that \( \Delta^{(m)} \xi_k \in l_\infty \) which gives \( \{\xi_k\}_{k=0}^{\infty} \in \Delta^{(m)} l_\infty \).

To establish the converse inclusion, suppose that \( x \in \Delta^{(m)} l_\infty \). Then there exists a constant \( L > 0 \) such that \( |\Delta^{(m)} \xi_k| \leq L \). The nondecreasing property of \( f_k \)'s implies that
\[
\sum_{k=0}^{\infty} f_k \left( \frac{|\Delta^{(m)} \xi_k|}{\lambda \alpha_k} \right) \leq \sum_{k=0}^{\infty} f_k \left( \frac{L}{\lambda \alpha_k} \right) < \infty \quad \text{for some } \lambda > 0,
\]
which gives \( x \in \Delta^{(m)} l_\alpha \{f_n\} \), which in turn implies that \( \Delta^{(m)} l_\alpha \{f_n\} = \Delta^{(m)} l_\infty \).

(ii) Using the similar characteristics of Orlicz functions one can easily obtains the inclusions. Therefore it is omitted.

Remark 4.4. The inclusions in (ii) are strict. Indeed, for the first inclusion, choose \( \alpha = \{\alpha_k\}_{k=0}^{\infty} = \{(k+1)^{-2}\}_{k=0}^{\infty} \) and \( x = \{\xi_k\}_{k=0}^{\infty} = \{\frac{\Sigma^{(m)} 1}{(k+1)^2}\}_{k=0}^{\infty} \), then \( x \in \Delta^{(m)} l_p \) but \( x \notin \Delta^{(m)} l_\alpha \{f_n\} \). For the second inclusion, choose \( \alpha = \{\alpha_k\}_{k=0}^{\infty} = \{(k+1)^{3}\}_{k=0}^{\infty} \) and \( x \) is same as above then it follows that \( x \in \Delta^{(m)} l_p \) but \( x \notin \Delta^{(m)} l_\alpha \{f_n\} \).

In the following, the sequence of vectors whose \((n+1)\)-th coordinate is 1 and others are zero will be denoted by \( \{e_n\}_{n=0}^{\infty} \).

Theorem 4.5. (Schauder Basis) Let \( \{f_n\}_{n=0}^{\infty} \) be a sequence of Orlicz functions satisfying the uniform \( \Delta_2 \)-condition. Then

(a) \( \Delta^{(m)} l_\alpha \{f_n\} \) has Schauder basis \( \{\Sigma^{(m)} e_k\}_{k=0}^{\infty} \) and for each \( x = \{\xi_k\}_{k=0}^{\infty} \in \Delta^{(m)} l_\alpha \{f_n\} \), the expression for \( x = \sum_{k=0}^{\infty} (\Delta^{(m)} x_k) (\Sigma^{(m)} e_k) \) is unique,

(b) \( \Delta^{(m)} l_\alpha \{f_n\} \) is separable.
Proof. (a) It is evident that for each \( k \in \mathbb{N}_0 \) one gets \( e_k \in l_{\alpha}\{f_n\} \) which implies that \( \{\Sigma(m)e_k\}_{k=0}^\infty \) is a sequence of elements of \( \Delta^{(m)}l_{\alpha}\{f_n\} \). The authors claim that \( \{\Sigma(m)e_k\}_{k=0}^\infty \) is a Schauder basis of \( \Delta^{(m)}l_{\alpha}\{f_n\} \). To prove our claim, choosing \( x \in \Delta^{(m)}l_{\alpha}\{f_n\} \) and putting \( x[j] = \sum_{k=0}^{j}(\Delta^{(m)}x)_k(\Sigma(m)e_k) = \sum_{k=0}^{j}\sum_{j=0}^{\infty}(\Delta^{(m)}x)_ke_k. \)

Since the sequence \( \{f_n\}_{n=0}^\infty \) of Orlicz functions satisfies the uniform \( \Delta_2 \)-condition, so by Theorem 4.1(c), one obtains \( \sum_{k=0}^{\infty}f_k\left(\frac{|\Delta^{(m)}\xi|}{\lambda\alpha_k}\right) < \infty \) for every \( \lambda > 0 \).

Therefore for each \( \epsilon \in (0,1) \) there exists a \( j_0 \in \mathbb{N} \) such that

\[
\sum_{k=0}^{j_0}f_k\left(\frac{|\Delta^{(m)}\xi_k|}{\epsilon\alpha_k}\right) \leq 1 \text{ holds.}
\]

Now for \( j \geq j_0 \), the following expression is obtained:

\[
||x-x[j]|_{\alpha,\Delta^{(m)}} = ||\Delta^{(m)}x-\Delta^{(m)}x[j]|_{l_{\alpha}\{f_n\}} = \inf \left\{ \lambda > 0 : \sum_{k=j+1}^{\infty}f_k\left(\frac{|\Delta^{(m)}\xi_k|}{\lambda\alpha_k}\right) \leq 1 \right\} \leq \inf \left\{ \lambda > 0 : \sum_{k=j_0}^{\infty}f_k\left(\frac{|\Delta^{(m)}\xi_k|}{\lambda\alpha_k}\right) \leq 1 \right\} \leq \epsilon,
\]

which gives \( x = \sum_{k=0}^{\infty}(\Delta^{(m)}x)_k(\Sigma(m)e_k) = \sum_{k=0}^{\infty}\sum_{j=0}^{\infty}(\Delta^{(m)}x)_ke_k. \)

To show uniqueness of \( x \), if possible let \( x \in \Delta^{(m)}l_{\alpha}\{f_n\} \) has another representation as \( x = \sum_{k=0}^{\infty}\sigma_k(\Sigma(m)e_k) = \sum_{k=0}^{\infty}\sum_{j=0}^{\infty}(\Delta^{(m)}x)_ke_k. \)

On the other hand, \( \Delta^{(m)}x = \sum_{k=0}^{\infty}(\Delta^{(m)}x)_ke_k \) which gives \( \sigma_k = (\Delta^{(m)}x)_k \) and therefore the expression for \( x \) is unique.

(b) Let us define the set \( S = \left\{ \sum_{k=0}^{k_0}t_k(\Sigma(m)e_k) : t_0, t_1, \ldots, t_{k_0} \in \mathbb{Q} \right\} \). It is required to show that \( S \) is a countable dense subset of \( \Delta^{(m)}l_{\alpha}\{f_n\} \). Clearly \( S \) is countable as the coefficients \( t_k \in \mathbb{Q} \) for each \( k = 0,1,\ldots,k_0 \).

Let \( \xi = \{\xi_k\}_{k=0}^{\infty} \in \Delta^{(m)}l_{\alpha}\{f_n\} \). So for every \( \epsilon > 0 \), \( \varrho_{\alpha,\Delta^{(m)}}(\xi) < \infty \), i.e., \( \sum_{k=0}^{\infty}f_k\left(\frac{|\Delta^{(m)}\xi_k|}{\epsilon\alpha_k}\right) < \infty \), which implies that there exists a \( k_0 \in \mathbb{N} \) such that the following holds:

\[
\sum_{k=k_0+1}^{\infty}f_k\left(\frac{|\Delta^{(m)}\xi_k|}{\epsilon\alpha_k}\right) < \frac{1}{2}, \quad (4.3)
\]
Since the operator $\Delta^{(m)}$ is continuous, $\xi_k$'s are real numbers, $t_k$'s are rational numbers for each $k = 0, 1, \ldots, k_0$ and $\mathbb{Q}$ is a dense subset of $\mathbb{R}$, so one gets

$$|\Delta^{(m)}\xi_k - \Delta^{(m)}t_k| < \frac{\epsilon \alpha_k}{2(k_0 + 1)}$$

for $k = 0, 1, 2, \ldots, k_0$.

Using the nondecreasing property of $f_k$'s, one obtains

$$\sum_{k=0}^{k_0} f_k\left(\frac{|\Delta^{(m)}\xi_k - \Delta^{(m)}t_k|}{\epsilon \alpha_k}\right) < \frac{1}{2}.$$  

Note that the element $u = \Delta^{(m)}t_0(\Sigma^{(m)}e_0) + \Delta^{(m)}t_1(\Sigma^{(m)}e_1) + \Delta^{(m)}t_2(\Sigma^{(m)}e_2) + \ldots + \Delta^{(m)}t_{k_0}(\Sigma^{(m)}e_{k_0}) \in S$.

Now using Eqn. 4.3, one gets

$$\theta_{\alpha,\Delta^{(m)}} \left(\frac{x-u}{\epsilon}\right) = \sum_{k=0}^{k_0} f_k\left(\frac{|\Delta^{(m)}\xi_k - \Delta^{(m)}t_k|}{\epsilon \alpha_k}\right) + \sum_{k=k_0+1}^{\infty} f_k\left(\frac{|\Delta^{(m)}\xi_k|}{\epsilon \alpha_k}\right) < 1.$$  

Therefore $\|x-u\|_{\alpha,\Delta^{(m)}} < \epsilon$, which says that the space $\Delta^{(m)}l_\alpha\{f_n\}$ is separable.

**Proof.** Applying the similar approach presented in Theorem 4.5, one can achieve this result. So the proof is omitted.  

## 5 Category Results on $\Delta^{(m)}l_\alpha\{f_n\}$ & $\Delta^{(m)}l_\alpha\{g_n\}$

In this section, it is contemplated to establish certain results related to Baire category for the sequence spaces $\Delta^{(m)}l_\alpha\{f_n\}$ and $\Delta^{(m)}l_\alpha\{g_n\}$. Firstly, the following theorem will be presented:

**Theorem 5.1.** For a sequence $\{f_n\}_{n=0}^{\infty}$ of non degenerate Orlicz functions, the sequence space $\Delta^{(m)}l_\alpha\{f_n\}$ is a dense $F_\sigma$-set of the first Baire category in $s$.

**Proof.** In Section 4, it is proved that $\Delta^{(m)}l_\alpha\{f_n\}$ is a Banach space equipped with the norm $\|\cdot\|_{\alpha,\Delta^{(m)}}$ defined below:

$$\|x\|_{\alpha,\Delta^{(m)}} = \inf \left\{ \lambda > 0 : \sum_{k=0}^{\infty} f_k\left(\frac{|\Delta^{(m)}\xi_k|}{\lambda \alpha_k}\right) \leq 1 \right\}.$$  

Let us consider the set $A_t$ as

$$A_t = \left\{ x = \{\xi_k\}_{k=0}^{\infty} \in \Delta^{(m)}l_\alpha\{f_n\} : \|x\|_{\alpha,\Delta^{(m)}} \leq t \right\}, \quad t = 1, 2, 3, \ldots.$$
Since each element of $\Delta^{(m)}l_\alpha\{f_n\}$ is in some $A_t$, so clearly $\Delta^{(m)}l_\alpha\{f_n\} = \bigcup_{t=1}^{\infty} A_t$.

Now, it will be shown that for each $t \in \mathbb{N}$, $A_t$’s are nowhere dense sets in $s$, the space of all real sequences with the Fréchet metric $d$. For this, $A_t$’s for each $t \in \mathbb{N}$ are closed sets in $s$ will be proved first. Let $a = \{a^{(i)}\}_{i=0}^{\infty} \in A_t$, the closure of $A_t$ and $a_k = \{a^{(i)}_k\}_{i=0}^{\infty} \in A_t$ with $a_k \to a$ as $k \to \infty$ in $s$. Then, one gets

$$d(a_k, a) \to 0 \text{ as } k \to \infty$$ which implies $|a^{(i)}_k - a^{(i)}| \to 0 \text{ as } k \to \infty$, for each $i \in \mathbb{N}$.

Denote $\lim_{k \to \infty} a^{(i)}_k = a^{(i)}$ for each $i \in \mathbb{N}_0$. Since $a_k \in A_t$, i.e., $\{a^{(i)}_k\}_{i=0}^{\infty} \in \Delta^{(m)}l_\alpha\{f_n\}$, so for each $k \in \mathbb{N}$, one obtains

$$\sum_{i=0}^{\infty} f_i\left(\frac{|\Delta^{(m)}a^{(i)}_k|}{\lambda \alpha_i}\right) < \infty \text{ for some } \lambda > 0 \text{ and } \|\{a^{(i)}_k\}_{i=0}^{\infty}\|_{\alpha, \Delta^{(m)}} \leq t, \; t = 1, 2, \ldots$$

Let $\|\{a^{(i)}_k\}_{i=0}^{\infty}\|_{\alpha, \Delta^{(m)}} = \lambda_0$ (say), then for each $k \in \mathbb{N}_0$, the followings hold:

$$\sum_{i=0}^{\infty} f_i\left(\frac{|\Delta^{(m)}a^{(i)}_k|}{\lambda_0 \alpha_i}\right) \leq 1 \text{ and } \lambda_0 \leq t.$$ 

The continuity of $f_i$’s and $\Delta^{(m)}$’s implies that

$$\sum_{i=0}^{\infty} f_i\left(\frac{|\Delta^{(m)}a^{(i)}_k|}{\lambda \alpha_i}\right) < \infty, \text{ for some } \lambda > 0 \text{ and } \sum_{i=0}^{\infty} f_i\left(\frac{|\Delta^{(m)}a^{(i)}_k|}{\lambda \alpha_i}\right) \leq 1,$$

because $a^{(i)}_k \to a^{(i)}$ as $k \to \infty$, i.e., $a = \{a^{(i)}\}_{i=0}^{\infty} \in \Delta^{(m)}l_\alpha\{f_n\}$ and

$$\|\{a^{(i)}\}_{i=0}^{\infty}\|_{\alpha, \Delta^{(m)}} \leq \lambda_0 \leq t.$$ 

Hence $a \in A_t$ and so $A_t$’s are closed sets in $s$. Therefore $\Delta^{(m)}l_\alpha\{f_n\}$ is an $F_\sigma$-set in $s$.

Now $A_t$ is a nowhere dense set in $s$ will be proved. A well known result is that a closed set in a metric space is nowhere dense if and only if its complement is everywhere dense (see [15, p. 75]). Denote the complement of $A_t$ by $B_t$, where $B_t$ has the following expression

$$B_t = \{x = \{\xi_k\}_{k=0}^{\infty} \in \Delta^{(m)}l_\alpha\{f_n\} : \|x\|_{\alpha, \Delta^{(m)}} > t\}, \; t = 1, 2, 3, \ldots$$

Indeed, the set $B_t$ is everywhere dense in $s$ will be proved now.

Firstly, $B_t$ is nonempty as for fixed $t$ as the element $v = \{\xi_k\}_{k=0}^{\infty}$ is in $B_t$, where $\xi_k = \Sigma^{(m)}\left[\lambda \alpha_k f_k^{-1} \left\{ \frac{\Theta(t+1)}{\lambda \alpha_k (t+1)} \right\} \right]$ for some $\lambda > 0$. To show that $\overline{B_t} = s$, first it is to be noted that $B_t \neq \emptyset$ and hence one can choose a sequence $y = \{y_k\}_{k=0}^{\infty} \in B_t$. 

For a given $\epsilon > 0$ there exists $p \in \mathbb{N}$ such that $\sum_{k=0}^{\infty} 2^{-k} < \epsilon$.

Let us construct the sequence $z = \{\tau_k\}_{k=0}^{\infty}$ as

$$
\tau_k = \xi_k \quad 0 \leq k \leq p - 1
= \tau_p \quad k = p
= \tau_{p+r}, \quad k = p + r, r = 1, 2, 3, \ldots,
$$

where $\tau_p$ will be determined from the relation $\frac{\Delta^{(m)} \tau_p}{\lambda \alpha_p} = f_p^{-1}\{\sum_{k=0}^{p} f_k\left(\frac{\Delta^{(m)} \eta_k}{\lambda \alpha_k}\right)\}$

and $\tau_{p+r}$ has the following expression

$$
\tau_{p+r} = \eta_{p+r} - \binom{m}{1}(\eta_{p+r-1} - \tau_{p+r-1}) + \binom{m}{2}(\eta_{p+r-2} - \tau_{p+r-2}) + \cdots + (-1)^m(\eta_{p+r-m} - \tau_{p+r-m}).
$$

Then one gets

$$
\sum_{k=0}^{\infty} f_k\left(\frac{\Delta^{(m)} \tau_k}{\lambda \alpha_k}\right) = \sum_{k=0}^{p-1} f_k\left(\frac{\Delta^{(m)} \xi_k}{\lambda \alpha_k}\right) + f_p\left(f_p^{-1}\{\sum_{k=0}^{p} f_k\left(\frac{\Delta^{(m)} \eta_k}{\lambda \alpha_k}\right)\}\right)
+ \sum_{k=p+1}^{\infty} f_k\left(\frac{\Delta^{(m)} \eta_k}{\lambda \alpha_k}\right)
= \sum_{k=0}^{p-1} f_k\left(\frac{\Delta^{(m)} \xi_k}{\lambda \alpha_k}\right) + \sum_{k=0}^{\infty} f_k\left(\frac{\Delta^{(m)} \eta_k}{\lambda \alpha_k}\right) < \infty
$$

and

$$
||z||_{\alpha, \Delta^{(m)}} = \inf\left\{\lambda > 0 : \sum_{k=0}^{\infty} f_k\left(\frac{\Delta^{(m)} \tau_k}{\lambda \alpha_k}\right) \leq 1\right\}
= \inf\left\{\lambda > 0 : \sum_{k=0}^{p-1} f_k\left(\frac{\Delta^{(m)} \xi_k}{\lambda \alpha_k}\right) + \sum_{k=0}^{\infty} f_k\left(\frac{\Delta^{(m)} \eta_k}{\lambda \alpha_k}\right) \leq 1\right\}
\geq \inf\left\{\lambda > 0 : \sum_{k=0}^{\infty} f_k\left(\frac{\Delta^{(m)} \eta_k}{\lambda \alpha_k}\right) \leq 1\right\} = ||y||_{\alpha, \Delta^{(m)}} > t.
$$

So, the sequence $z = \{\tau_k\}_{k=0}^{\infty} \in B_t$. Therefore for arbitrary $x \in s$, one obtains

$$
d(x, z) = \sum_{k=0}^{\infty} \frac{1}{2^k} |\xi_k - \tau_k| \leq \sum_{k=p}^{\infty} 2^{-k} < \epsilon.
$$

Hence for every $\epsilon$-ball in $s$ contains an element from $B_t$. Therefore $B_t$ is everywhere dense in $s$ and hence it’s complement $A_t$ is nowhere dense in $s$. So, $\Delta^{(m)} I_{\alpha} \{f_n\}$ is a set of the first Baire category in $s$.

It remains to be showed that $\Delta^{(m)} I_{\alpha} \{f_n\}$ is dense in $s$. To show this, suppose that
x = \{\xi_k\}_{k=0}^{\infty} \in s \text{ is arbitrary. For a given } \epsilon > 0, \text{ there exists a } p_0 \in \mathbb{N} \text{ such that }
\sum_{k=p_0+1}^{\infty} \frac{1}{2^k} < \epsilon. \text{ Define the sequence } w = \{w_k\}_{k=0}^{\infty} \text{ as } w_k = \xi_k, \text{ for } k = 0, 1, 2, \ldots, p_0
\text{ and } w_{p_0+r} = \left(\frac{m}{2}\right)^{-1} w_{p_0+r-1} - \left(\frac{m}{2}\right)^{-1} w_{p_0+r-2} + \cdots + (-1)^{m+1} w_{p_0+r-m}, r = 1, 2, 3, \ldots.
\text{ Then it is easy to verify that } w \in \Delta^{(m)}l_\alpha\{f_n\} \text{ and }
d(x, w) = \sum_{k=p_0+1}^{\infty} \frac{1}{2^k} \frac{1}{|\xi_k - w_k|} \leq \sum_{k=p_0+1}^{\infty} \frac{1}{2^k} < \epsilon.
\text{ Therefore } \Delta^{(m)}l_\alpha\{f_n\} \text{ is a dense set in } s. \text{ Combining all the results discussed }
\text{ above, it is concluded that } \Delta^{(m)}l_\alpha\{f_n\} \text{ is a dense } F_\sigma\text{-set of the first Baire category in } s. \quad \square

\textbf{Corollary 5.2.} (i) \text{ The sequence space } \Delta^{(m)}l_\alpha\{g_n\} \text{ is a dense } F_\sigma\text{-set of the first Baire category in } s. 
(ii) \text{ If } f_n^\infty_{n=0} \text{ satisfies uniform } \Delta_2\text{-condition, then by Theorem 4.1(c), } \Delta^{(m)}l_\alpha\{f_n\} \text{ is a dense } F_\sigma\text{-set of the first Baire category in } s.
(iii) \text{ If } \alpha = \{\alpha_n\}_{n=0}^{\infty} = \{1, 1, 1, \ldots, 1, \ldots\} \text{ and } f_n(x) = x^p, 1 \leq p < \infty \text{ for each } n, 
\text{ then one gets that the sequence space } l_p(\Delta^{(m)}) \text{ [16], which has this property. }
(iv) \text{ The union } \Delta^{(m)}l_\alpha\{f_n\} \cup \Delta^{(m)}l_\alpha\{g_n\} \text{ is a dense } F_\sigma\text{-set of the first Baire category in } s. \text{ Also, since the symmetric difference } \Delta^{(m)}l_\alpha\{f_n\} \oplus \Delta^{(m)}l_\alpha\{g_n\} \subset \Delta^{(m)}l_\alpha\{f_n\} \cup \Delta^{(m)}l_\alpha\{g_n\}, \text{ so } \Delta^{(m)}l_\alpha\{f_n\} \oplus \Delta^{(m)}l_\alpha\{g_n\} \text{ is a set of the first Baire category in } s.

\textbf{Remark 5.3.} \text{ Using the Cauchy criterion of convergence of a series of real numbers, for some } \lambda = \lambda_0 \text{ one can write }
\Delta^{(m)}l_\alpha\{f_n\} = \bigcup_{p=1}^{\infty} \bigcup_{N \geq 1} \bigcap_{1 \leq i < j} \left\{x \in s : \left|\sum_{k=i}^{j} f_k \left(\frac{\Delta^{(m)}|\xi_k|}{\lambda_0 \alpha_k}\right) \right| \leq \frac{1}{p}\right\}.
\text{ Then it is easy to show that the set in second bracket is a closed set in } s \text{ and hence }
\Delta^{(m)}l_\alpha\{f_n\} \text{ is an } F_{\sigma\delta}\text{-set (countable intersection of } F_{\sigma}\text{-sets) in } s.

\text{ In the next theorem, intersection of two sequence spaces } \Delta^{(m)}l_\alpha\{f_n\} \text{ and }
\Delta^{(m)}l_\alpha\{g_n\} \text{ in } \Delta^{(m)}l_\alpha\{f_n\} \text{ is characterized in respect of Baire category. The following assumptions on sequences } \{f_n\}_{n=0}^{\infty} \text{ and } \{g_n\}_{n=0}^{\infty} \text{ are considered to establish the theorem: }
The sequence of non degenerate Orlicz functions } \{f_n\}_{n=0}^{\infty} \text{ and } \{g_n\}_{n=0}^{\infty} \text{ are said to satisfy condition } (T), \text{ if the following two conditions hold: }
(i) \text{ both functions satisfy the uniform } \Delta_2\text{-condition and }
(ii) \text{ } \sum_{k=0}^{\infty} g_k(\alpha_k t) = \infty \& \sum_{k=0}^{\infty} f_k \left(\frac{t}{\alpha_k}\right) = \infty \text{ for some } t > 0, \text{ where } \{\alpha_n\}_{n=0}^{\infty} \text{ is a sequence of strictly positive real numbers.
Theorem 5.4. Let \( \{f_n\}_{n=0}^{\infty} \) and \( \{g_n\}_{n=0}^{\infty} \) be two sequences of non-degenerate Orlicz functions satisfying the condition \((T)\). If \( \Delta^{(m)}l_\alpha\{f_n\} \cap \Delta^{(m)}l^\alpha\{g_n\} \neq \Delta^{(m)}l_\alpha\{f_n\} \), then the set \( \Delta^{(m)}l_\alpha\{f_n\} \cap \Delta^{(m)}l^\alpha\{g_n\} \) is not a dense \( F_\sigma \)-set of the first Baire category in \( \Delta^{(m)}l_\alpha\{f_n\} \).

Proof. Since \( \{f_n\}_{n=0}^{\infty} \) satisfies uniform \( \Delta_2 \)-condition, so for every \( \epsilon \in (0,1) \) there exists \( j \in \mathbb{N} \) such that
\[
\sum_{k=j+1}^{\infty} f_k \left( \frac{|\Delta^{(m)}x_k|}{\epsilon \alpha_k} \right) \leq 1.
\]
Note that the element \( u[j] = \sum_{j=0}^{j} (\Delta^{(m)}x_k) (\Sigma^{(m)} e_k) \in \Delta^{(m)}l_\alpha\{f_n\} \cap \Delta^{(m)}l^\alpha\{g_n\} \) as the sequence \( \Delta^{(m)}u[j] \in l_\alpha\{f_n\} \cap l^\alpha\{g_n\} \).

Let \( x \in \Delta^{(m)}l_\alpha\{f_n\} \) be an arbitrary sequence. Then by the definition of norm on the space \( \Delta^{(m)}l_\alpha\{f_n\} \), one gets
\[
\varrho_{\alpha,\Delta^{(m)}}(x-u[j]) = \sum_{k=j+1}^{\infty} f_k \left( \frac{|\Delta^{(m)}x_k|}{\epsilon \alpha_k} \right) \leq 1,
\]
which implies that \( ||x-u[j]||_{\alpha,\Delta^{(m)}} \leq \epsilon. \)

Therefore the set \( \Delta^{(m)}l_\alpha\{f_n\} \cap \Delta^{(m)}l^\alpha\{g_n\} \) is dense in \( \Delta^{(m)}l_\alpha\{f_n\} \).

An equivalent expression for the set \( \Delta^{(m)}l_\alpha\{f_n\} \cap \Delta^{(m)}l^\alpha\{g_n\} \) is given below:
\[
\Delta^{(m)}l_\alpha\{f_n\} \cap \Delta^{(m)}l^\alpha\{g_n\} = \left\{ x \in \Delta^{(m)}l_\alpha\{f_n\} : \sum_{k=0}^{\infty} g_k \left( \alpha_k |\Delta^{(m)}x_k| \right) < \infty \right\}
\]
\[
= \bigcup_{j=0}^{\infty} \bigcap_{i=1}^{\infty} \left\{ x \in \Delta^{(m)}l_\alpha\{f_n\} : \sum_{k=0}^{j} g_k \left( \alpha_k |\Delta^{(m)}x_k| \right) \leq i \right\}
\]
\[
= \bigcap_{j=0}^{\infty} \left\{ x \in \Delta^{(m)}l_\alpha\{f_n\} : \sum_{k=0}^{j} g_k \left( \alpha_k |\Delta^{(m)}x_k| \right) \leq j \right\}.
\]

where \( M(i) = \bigcap_{j=0}^{\infty} \left\{ x \in \Delta^{(m)}l_\alpha\{f_n\} : \sum_{k=0}^{j} g_k \left( \alpha_k |\Delta^{(m)}x_k| \right) \leq j \right\} \).

Our aim is to establish that \( M(i) \) is a nowhere dense set in \( \Delta^{(m)}l_\alpha\{f_n\} \). To establish this, first \( M(i) \) is a closed set in \( \Delta^{(m)}l_\alpha\{f_n\} \) will be proved and later applying ‘a closed set in a metric space is nowhere dense if and only if its complement is everywhere dense’ (see [15], p. 79) the result will be concluded.

Let \( x^{(l)} = (\xi_{j,l})_{j=0}^{\infty} \in M(i) \) be a sequence with \( x^{(l)} \to x = (\xi_{j,l})_{j=0}^{\infty} \) as \( l \to \infty \), where \( x \in M(i) \). Since \( \Delta^{(m)}l_\alpha\{f_n\} \) is a K-space (see Theorem 4.1(a)), so the convergence in this space is equivalent to the coordinate-wise convergence.

Using the continuity of \( g_n \) for each \( n \in \mathbb{N}_0 \) and operator \( \Delta^{(m)} \), one obtains
\[
\sum_{k=0}^{j} g_k(\alpha_k |\Delta^{(m)} \xi_k|) = \sum_{k=0}^{j} g_k(\alpha_k |\Delta^{(m)} \lim_{l \to \infty} \xi_k^{(l)}|) = \lim_{l \to \infty} \sum_{k=0}^{j} g_k(\alpha_k |\Delta^{(m)} \xi_k^{(l)}|) \leq i,
\]

whence \( x \in M(i) \). Therefore \( \overline{M(i)} = M(i) \), i.e., \( M(i) \) is closed and hence \( \Delta^{(m)}{l_\alpha} \{f_n\} \bigcap \Delta^{(m)}{\iota_n} \{g_n\} \) is an \( F_\sigma \) set.

Now it will be shown that the set \( N(i) = \Delta^{(m)}{l_\alpha} \{f_n\} \bigsetminus \overline{M(i)} = \Delta^{(m)}{l_\alpha} \{f_n\} \bigsetminus M(i) \) (say and \( \bigsetminus \) denotes the difference between two sets) is everywhere dense in \( \Delta^{(m)}{l_\alpha} \{f_n\} \), where \( N(i) \) is defined as follows

\[
N(i) = \bigcup_{j=0}^{\infty} \left\{ x \in \Delta^{(m)}{l_\alpha} \{f_n\} : \sum_{k=0}^{j} g_k(\alpha_k |\Delta^{(m)} \xi_k|) > i \right\}.
\]

By assumption, \( \Delta^{(m)}{l_\alpha} \{f_n\} \bigcap \Delta^{(m)}{\iota_n} \{g_n\} \neq \Delta^{(m)}{l_\alpha} \{f_n\} \). Hence there exists some \( x \in \Delta^{(m)}{l_\alpha} \{f_n\} \) for which \( x \notin \Delta^{(m)}{\iota_n} \{g_n\} \). Therefore by definition

\[
\sum_{k=0}^{\infty} g_k(\alpha_k |\Delta^{(m)} \xi_k|) \text{ is diverges,}
\]

which in turn gives \( N(i) \neq \emptyset \), for each \( i \in \mathbb{N} \).

Let \( y = \{\eta_k\}_{k=0}^{\infty} \in N(i) \) be a sequence. Then there exists \( p_0(< j) \in \mathbb{N} \), one gets

\[
\lim_{j \to \infty} \sum_{k=0}^{j} g_k(\alpha_k |\Delta^{(m)} \eta_k|) = \infty \text{ and } \sum_{k=p_0+1}^{\infty} f_k \left( \frac{2|\Delta^{(m)} \eta_k|}{\epsilon \alpha_k} \right) \leq 1.
\]

Further since \( x = \{\xi_k\}_{k=0}^{\infty} \in \Delta^{(m)}{l_\alpha} \{f_n\} \), so for every \( \epsilon > 0 \) there exists \( p_0 \in \mathbb{N} \), one obtains

\[
\sum_{k=p_0+1}^{\infty} f_k \left( \frac{2|\Delta^{(m)} \xi_k|}{\epsilon \alpha_k} \right) \leq 1.
\]

Now the following sequence \( u = \{u_k\}_{k=0}^{\infty} \) is constructed:

\[
u_k = \xi_k, \quad k = 0, 1, 2, \ldots, p_0
\]
\[
u_{p_0+r}, \quad k = p_0 + r, r = 1, 2, 3, \ldots,
\]

where

\[
u_{p_0+r} = \eta_{p_0+r} - \binom{m}{1} (\eta_{p_0+r-1} - u_{p_0+r-1}) + \binom{m}{2} (\eta_{p_0+r-2} - u_{p_0+r-2}) + \cdots + (-1)^m (\eta_{p_0+r-m} - u_{p_0+r-m}).
\]

Then for \( j > p_0 \), one gets

\[
\sum_{k=0}^{j} g_k(\alpha_k |\Delta^{(m)} u_k|) = \sum_{k=0}^{p_0} g_k(\alpha_k |\Delta^{(m)} \xi_k|) + \sum_{k=p_0+1}^{j} g_k(\alpha_k |\Delta^{(m)} \eta_k|) > i.
\]
That is the sequence \( u = \{u_k\}_{k=0}^{\infty} \in N(i) \) and

\[
\varrho_{\alpha, \Delta^{(m)}} \left( \frac{x-u}{\epsilon} \right) = \sum_{k=0}^{\infty} f_k \left( \frac{\Delta^{(m)}(\xi_k - u_k)}{\epsilon \alpha_k} \right) = \sum_{k=p_0+1}^{\infty} f_k \left( \frac{\Delta^{(m)}(\xi_k - \Delta^{(m)}\eta_k)}{\epsilon \alpha_k} \right) \leq \frac{1}{2} \sum_{k=p_0+1}^{\infty} f_k \left( \frac{2|\Delta^{(m)}(\xi_k)|}{\epsilon \alpha_k} \right) + \frac{1}{2} \sum_{k=p_0+1}^{\infty} f_k \left( \frac{2|\Delta^{(m)}(\eta_k)|}{\epsilon \alpha_k} \right) \leq 1,
\]

which gives \( \|x-u\|_{\alpha, \Delta^{(m)}} \leq \epsilon \). Thus \( N(i) \) is everywhere dense in \( \Delta^{(m)}l_\alpha \{f_n\} \) for each \( i = 1, 2, \ldots \) and hence its complement \( M(i) \) is nowhere dense in \( \Delta^{(m)}l_\alpha \{f_n\} \). Therefore \( \Delta^{(m)}l_\alpha \{f_n\} \cap \Delta^{(m)}l^\alpha \{g_n\} \) is a dense \( F_\sigma \)-set of the first Baire category in \( \Delta^{(m)}l_\alpha \{f_n\} \).

Let \( \{f_n\}_{n=0}^{\infty} \) and \( \{g_n\}_{n=0}^{\infty} \) be two sequences of non degenerate Orlicz functions satisfying the condition \((T)\). Then from Theorem 5.4 the following results hold:

**Corollary 5.5.** (i) If \( \Delta^{(m)}l_\alpha \{f_n\} \cap \Delta^{(m)}l^\alpha \{g_n\} \neq \Delta^{(m)}l^\alpha \{g_n\} \), then the set \( \Delta^{(m)}l_\alpha \{f_n\} \cap \Delta^{(m)}l^\alpha \{g_n\} \) is a dense \( F_\sigma \)-set of the first Baire category in \( \Delta^{(m)}l^\alpha \{g_n\} \).

(ii) If \( m = 0 \), \( \alpha = \{\alpha_n\}_{n=0}^{\infty} = \{1, 1, \ldots, 1\} \), then \( l\{f_n\} \cap l\{g_n\} \) is a dense \( F_\sigma \)-set of the first Baire category in \( l\{f_n\} \) [8].

(iii) If \( m = 0 \), \( f_n = f \) and \( g_n = g \) for each \( n \), then \( l^\alpha \cap l^\alpha \) is a dense \( F_\sigma \)-set of the first Baire category in \( l^\alpha \). These spaces \( l^\alpha \) and \( l^\alpha \) were defined by Gupta & Pradhan [17].

(iv) If \( m = 0 \), \( \alpha \in l_\infty \), \( \{\alpha^{-1}\} \) is unbounded and \( f_n = f = g_n \) for each \( n \), then \( l^\alpha \cap l^\alpha \) is a dense \( F_\sigma \)-set of the first Baire category in \( l^\alpha \) [17].

(v) It is immediate from Proposition 4.3(ii) that the given assumption on \( \alpha \), both the spaces \( \Delta^{(m)}l_\alpha \{f_n\} \) and \( \Delta^{(m)}l^\alpha \{g_n\} \) are dense \( F_\sigma \)-set of the first Baire category in \( \Delta^{(m)}l^\alpha \).

(vi) Further if \( m = 0 \), \( f_n = f \) for each \( n \) and \( \alpha_n^{\frac{1}{n}} \to \infty \), then it is easy to show that \( l^\alpha \cap \delta \), the space of all entire sequences defined as \( \delta = \{x = \{\xi_n\}_{n=0}^{\infty} \in w : \lim_{n \to \infty} |\xi_n|^{\frac{1}{n}} = 0\} \). The inclusion is strict for \( \alpha = \{\alpha_n\}_{n=0}^{\infty} = \{(n+1)^n\}_{n=0}^{\infty} \) and \( x = \{\xi_n\}_{n=0}^{\infty} = \left(\frac{1}{(n+1)!}\right)_{n=0}^{\infty} \). Then \( l^\alpha \) is a dense \( F_\sigma \)-set of the first Baire category in \( \delta \).

**Remark 5.6.** By the Cauchy criterion of a series of real numbers the set \( \Delta^{(m)}l_\alpha \{f_n\} \cap \Delta^{(m)}l^\alpha \{g_n\} \) can be written as

\[
\Delta^{(m)}l_\alpha \{f_n\} \cap \Delta^{(m)}l^\alpha \{g_n\} = \bigcap_{p=1}^{\infty} \bigcup_{N \geq 1} \bigcap_{1 \leq i < j} \left\{ x \in \Delta^{(m)}l_\alpha \{f_n\} : \right\}
\]
\[
\left| \sum_{k=i}^{j} g_k \left( \alpha_k |\Delta^{(m)} \xi_k| \right) \right| \leq \frac{1}{p}
\]

Hence the set \( \Delta^{(m)} I_{\alpha}\{f_n\} \cap \Delta^{(m)} I_{\alpha}\{g_n\} \) is an \( F_{\sigma\delta} \)-set in \( \Delta^{(m)} I_{\alpha}\{f_n\} \).

6 Conclusion

The application of the Baire category results in sequence spaces were studied by Šalát [6], Ewert and Šalát [8] and others. In the present paper, the Baire category results in modular sequence spaces \( \Delta^{(m)} I_{\alpha}\{f_n\} \) & \( \Delta^{(m)} I_{\alpha}\{g_n\} \) defined by using difference sequences and a sequence \( \{\alpha_n\}_{n=0}^{\infty} (>0) \) of real numbers are studied. For distinct choices of the sequence \( \{\alpha_n\}_{n=0}^{\infty} \) and the difference operator \( \Delta^{(m)} \), the results related to dense \( F_{\sigma}\)-set of the first Baire category in \( s \) of the spaces introduced by Gupta and Pradhan [17], Altay [16] are obtained. The work of Ewert and Šalát [8] has also been generalized.

Acknowledgements : The authors are indebted to the anonymous referee for providing comments and suggestions for improvement of the paper. The second author gratefully acknowledges financial support from the Council of Scientific and Industrial Research (CSIR), New Delhi, Govt. of India (award no.-09/081(0988)/2009-EMR-I) during the preparation of this manuscript.

References


(Received 5 April 2013)
(Accepted 17 October 2017)