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On the Existence of Positive Solutions for

a Boundary Valued Problem of Fractional Order
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Abstract : In this paper, we investigate the problem of existence and nonexistence
of positive solutions for the nonlinear boundary value problem of fractional order:

Dαu(t) + λa(t)f(u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′′(0) = 0, γu′(1) + βu′′(1) = 0,

where Dα is the Caputo’s fractional derivative and λ is a positive parameter.
By using Krasnoesel’skii’s fixed-point theorem of cone preserving operators, we
establish various results on the existence of positive solutions of the boundary value
problem. Under various assumptions on a(t) and f(u(t)), we give the intervals of
the parameter λ which yield the existence of the positive solutions.
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1 Introduction

One of the most frequently used tools for proving the existence of positive
solutions to the integral equations and boundary value problems is Krasnoselskii’s
theorem on cone expansion and compression and its norm-type version due to Guo
and Lakshmikantham [3]. In 1994, Wang [9] applied Krasnoselskii’s work to eigen-
value problems to establish intervals of the parameter for which there is at least
one positive solution. Since this pioneering work a lot of research has been done
in this area. Differential equations of fractional order, or fractional differential
equations, in which an unknown function is contained under the operation of a
derivative of fractional order, have been of great interest recently. Many papers
and books on fractional calculus, fractional differential equations have appeared
recently [1,3,5,6,9,10]. It should be noted that most of papers and books on frac-
tional calculus are devoted to the solvability of linear initial fractional differential
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equations in terms of special functions. Recently, there are some papers deal with
the existence and multiplicity of solution (or positive solution) of nonlinear frac-
tional differential equation by the use of techniques of nonlinear analysis. Bai
and Lü [1] studied the existence and multiplicity of positive solutions of nonlinear
fractional differential equation boundary value problem

Dα
0+u(t) = f(t, u(t)), 0 < t < 1, 1 < α ≤ 2,

u(0) = u(1) = 0,

where Dα
0+ is the standard Riemann-Liouville fractional derivative. Zhang [10]

considered the existence of solution of nonlinear fractional boundary value prob-
lems involving Caputo’s derivative

Dαu(t) = f(t, u(t)), 0 < t < 1, 1 < α ≤ 2,

u(0) = ν 6= 0, u(1) = ρ 6= 0.

In another paper, by using fixed point theorem on cones, Zhang [11] studied
the existence and multiplicity of positive solutions of nonlinear fractional boundary
value problem

Dαu(t) = f(t, u(t)), 0 < t < 1, 1 < α ≤ 2,

u(0) + u′(0) = 0, u(1) + u′(1) = 0,

where Dα is the Caputo’s fractional derivative.
El-Shahed [2]considered the existence and non-existence of positive solutions

to nonlinear fractional boundary value problem:

Dα
0+u(t) + λa(t)f(u(t)) = 0, 0 < t < 1, 2 < α ≤ 3, (1.1)

u(0) = u′(0) = u′(1) = 0, (1.2)

The purpose of this paper is to establish the existence and nonexistence of
positive solutions to nonlinear fractional boundary value problem

Dαu(t) + λa(t)f(u(t)) = 0, 0 < t < 1, 2 < α ≤ 3, (1.3)

u(0) = u′′(0) = 0, γu′(1) + βu′′(1) = 0, (1.4)

where λ is a positive parameter, a : (0, 1) → [0,∞) is continuous with
∫ 1

0
a(t) dt > 0

and f : [0,∞) → [0,∞) is continuous. Here, by a positive solution of the boundary
value problem we mean a function which is positive on (0, 1) and satisfies differen-
tial equation (1.3) and the boundary condition (1.4). The paper has been organized
as follows. In Section 2, we give basic definitions and provide some properties of
certain Greens functions which are needed later. We also state Krasnoselskiis fixed
point theorem for cone preserving operators. In Section 3 we establish some results
for the existence and non-existence of positive solutions to problem (1) and (2).
In the end of this section, an example is also given to illustrate the main results.
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2 Preliminaries

For the convenience of the reader, we present here some notations and lemmas
that will be used to the proof of our main results.

Definition 2.1 [5]. The Riemann-Liouville fractional integral of order α > 0 of
a function f : [0,∞) → R is given by:

Iαf(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(s)ds.

Definition 2.2 [6]. The Caputo’s fractional derivative of order α > 0 can be
written as:

Dαf(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)
(t− s)α−n+1

f(s)ds, n = [α] + 1.

Definition 2.3 [2].Let E be a real Banach space. A nonempty closed convex set
K ⊂ E is called cone of E if it satisfies the following conditions:

1. x ∈ K, σ ≥ 0 implies σ x ∈ K;

2. x ∈ K, −x ∈ K implies x = 0.

Definition 2.4 [2].An operator is called completely continuous if it is contin-
uous and maps bounded sets into precompact sets.

All results are based on the following fixed point theorem of cone expansion-
compression type due to Krasnoselskii’s. See, for example, [2]and [4].

Theorem 1 [2, 4].Let E be a Banach space and K ⊂ E is a cone in E. Assume
that Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let T : K ∩ (Ω2 \
Ω1) −→ K be completely continuous operator. In addition suppose either:

H1 : ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂Ω2 or

H2 : ‖Tu‖ ≤ ‖u‖, ∀u ∈ K ∩ ∂Ω2 and ‖Tu‖ ≥ ‖u‖, ∀u ∈ K ∩ ∂Ω1.

holds. Then T has a fixed pint in K ∩ (Ω2 \ Ω1).

G(t, s) ≥ 0 and G(1, s) ≥ G(t, s), 0 ≤ t, s ≤ 1. (2.1)

Lemma 2.5 G(t, s) ≥ q(t)G(1, s) for 0 ≤ t, s ≤ 1, where q(t) = β(α−2)t
γ+β(α−2) .

Proof. If t ≥ s, then

G(t, s)
G(1, s)

=
γ(α− 1)t(1− s)α−2 + βt(α− 1)(α− 2)(1− s)α−3 − γ(t− s)α−1

γ(α− 1)(1− s)α−2 + β(α− 1)(α− 2)(1− s)α−3 − γ(1− s)α−1
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≥ γ(α− 1)t(1− s)α−2 + βt(α− 1)(α− 2)(1− s)α−3 − γ(t− s)2(1− s)α−3

γ(α− 1)(1− s)α−2 + β(α− 1)(α− 2)(1− s)α−3 − γ(1− s)α−1

≥ β(α− 2)t
γ + β(α− 2)

.

If t ≤ s, then

G(t, s)
G(1, s)

=
γt(1− s)α−2 + βt(α− 2)(1− s)α−3

γ(1− s)α−2 + β(α− 2)(1− s)α−3
= t ≥ β(α− 2)t

γ + β(α− 2)
.

The proof is complete. 2

3 Main results

In this section, we will apply Krasnoesel’skii’s fixed point theorem to the eigenvalue
problem (1.3) and (1.4). We note that u(t) is a solution of (1.3) and (1.4) if and
only if

u(t) = λ

∫ 1

0

G(t, s) a(s)f(u(s)) ds, 0 ≤ t ≤ 1.

We shall consider the Banach space X = C[0, 1] equipped with standard norm
‖u‖ = max0≤t≤1 |u(t)|, u ∈ X. We define a cone P by

P = {u ∈ X : u(t) ≥ q(t) ‖u‖, t ∈ [0, 1]} .

It is easy to see that if u ∈ P , then ‖u‖ = u(1) . Define an integral operator by:

Tu(t) = λ

∫ 1

0

G(t, s) a(s)f(u(s)) ds, 0 ≤ t ≤ 1, u ∈ P. (3.1)

It is well known that T : P −→ X is a completely continuous operator.

Lemma 3.1 T (P ) ⊂ P .

Proof. Notice from (7) and Lemma (2) that, for u ∈ P , Tu(t) ≥ 0 on [0, 1]
and

Tu(t) = λ

∫ 1

0

G(t, s)a(s)f(u(s)) ds

≥ λq(t)
∫ 1

0

G(1, s)a(s)f(u(s)) ds

≥ λq(t) max
0≤t≤1

∫ 1

0

G(t, s) a(s)f(u(s)) ds

= q(t)‖Tu(t)‖, for all t, s ∈ [0, 1].



THE EXISTENCE OF POSITIVE SOLUTIONS 147

Thus, T (P ) ⊂ P . 2

We can write (8) in the form:

Tu(t) = λ

∫ 1

0

G(t, s) g(s, u(s)) ds, 0 ≤ t ≤ 1, u ∈ P. (3.2)

Lemma 3.2 Assume that g : [0, 1]×R −→ R is continuous function, then Tu(t)
is completely continuous operator.

Proof. It is easy to see that Tu(t) is continuous. For u ∈ M = {u ∈ X :
‖u‖ < l, l > 0}, we obtain

∣∣∣Tu(t)
∣∣∣ =

∣∣∣
∫ 1

0

t(1− s)α−2

Γ(α− 1)
g(s, u(s))ds +

β

γ

∫ 1

0

t(1− s)α−3

Γ(α− 2)
g(s, u(s))ds

−
∫ t

0

(t− s)α−1

Γ(α)
g(s, u(s))ds

∣∣∣

≤
∫ 1

0

t(1− s)α−2

Γ(α− 1)

∣∣∣g(s, u(s))
∣∣∣ds +

β

γ

∫ 1

0

(1− s)α−3

Γ(α− 2)

∣∣∣g(s, u(s))
∣∣∣ds+

+
∫ t

0

(t− s)α−1

Γ(α)

∣∣∣g(s, u(s))
∣∣∣ds

≤ L t

Γ(α)
+

βL

Γ(α− 1)
+

L tα

Γ(α + 1)

≤ L

Γ(α)
+

βL

γΓ(α− 1)
+

L

Γ(α + 1)
,

where L = max0≤t≤1,0≤u≤l

∣∣∣g(t, u(t)
∣∣∣ + 1, so T (M) is bounded. Next we shall

show the equicontinuity of T (M). ∀u ∈ M, ε > 0, t1 < t2, we have
∣∣∣Tu(t2)− Tu(t1)

∣∣∣ =

∣∣∣
∫ 1

0

(t2 − t1)
(1− s)α−2

Γ(α− 1)
g(s, u(s))ds +

β

γ
(t2 − t1)

∫ 1

0

(1− s)α−3

Γ(α− 2)
g(s, u(s))ds

+
∫ t1

0

(t1 − s)α−1

Γ(α)
g(s, u(s))ds−

∫ t2

0

(t2 − s)α−1

Γ(α)
g(s, u(s))ds

∣∣∣

≤ L

Γ(α)
+

2L

Γ(α + 1)
.

Thus T (M) is equicontinuous. The Arzela-Ascoli theorem implies that the oper-
ator T is completely continuous and the proof is complete. 2
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We define some important constants[8]

A =
∫ 1

0

G(1, s) a(s)q(s) ds, B =
∫ 1

0

G(1, s) a(s) ds,

F0 = lim
u→0+

sup
f(u)

u
, f0 = lim

u→0+
inf

f(u)
u

,

F∞ = lim
u→+∞

sup
f(u)

u
, f∞ = lim

u→+∞
inf

f(u)
u

.

Here we assume that 1
Af∞

= 0 if f∞ → ∞ and 1
BF0

= ∞ if F0 → 0 and 1
Af0

= 0
if f0 →∞ and 1

BF∞
= ∞ if F∞ → 0.

Theorem 2 Suppose that Af∞ > BF0, then for each λ ∈
(

1
Af∞

, 1
BF0

)
, the prob-

lem (1.3) and (1.4) has at least one positive solution.

Proof. We choose ε > 0 sufficiently small such that (F0 + ε)λB ≤ 1. By
definition of F0, we can see that there exists an l1 > 0, such that f(u) ≤ (F0 + ε)u
for 0 < u ≤ l1. If u ∈ P with ‖u‖ = l1, we have

‖Tu(t)‖ = Tu(1) = λ

∫ 1

0

G(1, s) a(s)f(u(s)) ds

≤ λ

∫ 1

0

G(1, s)a(s)(F0 + ε)u(s) ds

≤ λ (F0 + ε)‖u‖
∫ 1

0

G(1, s)a(s) ds

≤ λB (F0 + ε)‖u‖ ≤ ‖u‖.
Then we have ‖Tu‖ ≤ ‖u‖. Thus if we let Ω1 = {u ∈ X : ‖u‖ < l1}, then

‖Tu‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1. We choose δ > 0 and c ∈ (0, 1
4 ), such that

λ

(
(f∞ − δ)

∫ 1

c

G(1, s)a(s)q(s) ds

)
≥ 1.

There exists l3 > 0, such that f(u) ≥ (f∞−δ)u for u > l3. Let l2 = max{γ+β(α−2)
β(α−2)c , 2l1}.

If u ∈ P with ‖u‖ = l2, then we have

u(t) ≥ q(t)l2 ≥ β(α− 2)t
γ + β(α− 2)

l2 ≥ β(α− 2)c
γ + β(α− 2)

l2 ≥ l3.

Therefore, for each u ∈ P with ‖u‖ = l2,we have

‖Tu(t)‖ = (Tu)(1) = λ

∫ 1

0

G(1, s) a(s)f(u(s)) ds

≥ λ

∫ 1

c

G(1, s)a(s)(f∞ − ε)u(s) ds

≥ λ (f∞ − ε)‖u‖
∫ 1

c

G(1, s)a(s) q(s) ds ≥ ‖u‖.



THE EXISTENCE OF POSITIVE SOLUTIONS 149

Thus if we let Ω2 = {u ∈ X : ‖u‖ < l2}, then Ω1 ⊂ Ω2 and ‖Tu‖ ≥ ‖u‖ for
u ∈ P ∩ ∂Ω2. Condition ( H1) of Krasnoesel’skii’s fixed point theorem is satisfied.
So there exists a fixed point of T in P . This completes the proof. 2

Theorem 3 Suppose that C1 and C2 hold. If Af0 > B F∞, then for each λ ∈(
1

Af0
, 1

BF∞

)
the problem (1.3) and (1.4) has at least one positive solution.

The proof of Theorem 3 is very similar to that of Theorem 2 and therefore omitted.

Theorem 4 Suppose that λBf(u) < u for u ∈ (0,∞). Then the problem (1.3)
and (1.4) has no positive solution.

Proof. Following Sun and Wen [8], assume to the contrary that u is a
positive solution of (1.3) and (1.4). Then

u(1) = λ

∫ 1

0

G(1, s) a(s)f(u(s)) ds <
1
B

∫ 1

0

G(1, s)a(s)u(s) ds

≤ 1
B

u(1)
∫ 1

0

G(1, s)a(s) ds = u(1).

This is a contradiction and completes the proof. 2

Theorem 5 Suppose that λAf(u) > u for u ∈ (0,∞). Then the problem (1.3)
and (1.4) has no positive solution.

Proof. Assume to the contrary that u is a positive solution of (1.3) and (1.4).
Then

u(1) = λ

∫ 1

0

G(1, s) a(s)f(u(s)) ds >
1
A

∫ 1

0

G(1, s)a(s)u(s) ds

≥ u(1)
A

∫ 1

0

G(1, s)a(s) q(s) ds ≥ u(1).

This is a contradiction and completes the proof. 2

Example 3.3 Consider the equation

u(2.5)(t) + λ(
t + 2

9
)

6u2 + u

u + 1
(3 + sin u) = 0, 0 ≤ t ≤ 1, (3.3)

u(0) = u′′(0) = 0, u(1) + 2u′(1) = 0. (3.4)
Then F0 = f0 = 3, F∞ = 24, f∞ = 12 and 3u < f(u) < 24u. By direct calcula-
tions, we obtain that A = 0.234034 and B = 0.668669. From theorem 2 we see that
if λ ∈ (0.356073, 0.498503), then the problem (3.3)-(3.4) has a positive solution.
From theorem 4 we have that if λ < 0.0623128, then the problem (3.3)-(3.4) has
a positive solution. By theorem 5 we have that if λ > 1.42429, then the problem
(3.3)-(3.4) has a positive solution.
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