The Generalized Stability of an n-Dimensional Jensen Type Functional Equation

J. Tipyan, C. Srisawat, P. Udomkavanich and P. Nakmahachalasint

Department of Mathematics, Faculty of Science, Chulalongkorn University
254 Phayathai Road, Pathumwan, Bangkok 10330, Thailand
e-mail: tipyan.j@gmail.com (J. Tipyan)
 Paisan.N@chula.ac.th (P. Nakmahachalasint)

Abstract: In this paper, we will investigate the generalized Hyer-Ulam-Rassias stability of an n-dimensional functional equation,

$$\sum_{i=1}^{n} p_i f(x_i) = f\left(\sum_{i=1}^{n} p_i x_i\right),$$

where $n > 1$ is an integer, and p_1, \ldots, p_n are positive real number with

$$\sum_{i=1}^{n} p_i = 1.$$

Keywords: functional equation; Jensen functional equation; stability; generalized stability

2010 Mathematics Subject Classification: 47H09; 47H10 (2010 MSC)

1 Introduction and preliminaries

In 1940 S.M. Ulam proposed the famous stability problem of linear functions. In 1941 D.H. Hyers considered the case of an approximately additive function $f : E \to E'$ where E and E' are Banach spaces and f satisfies the inequality

$$\|f(x + y) - f(x) - f(y)\| \leq \varepsilon$$

Corresponding author.

Copyright © 2014 by the Mathematical Association of Thailand. All rights reserved.
for all $x, y \in E$ and for some $\varepsilon > 0$. It was shown that the limit

$$L(x) = \lim_{n \to \infty} 2^{-n} f(2^n x)$$

exists for all $x \in E$ and that $L : E \to E'$ is the unique additive function satisfying

$$\|f(x) - L(x)\| \leq \varepsilon.$$

$$\|f(x + y) - f(x) - f(y)\| \leq \theta(\|x\|^p + \|y\|^p)$$

for all $x, y \in E$ where $\theta \geq 0$ and $0 \leq p < 1$ are constants. Since then, the stability problem has been widely investigated for different types of functional equations. The Jensen functional equation given by

$$\frac{f(x) + f(y)}{2} = f\left(\frac{x + y}{2}\right)$$

has close connection [3, 4] with the Cauchy functional equation

$$f(x) + f(y) = f(x + y).$$

Stability of Jensen equation has been studied at first by Kominek [7]. In 1998, S.M. Jung [5] investigated the Hyers-Ulam stability for Jensen’s equation on a restricted domain.

In this paper, we will extend the Jensen functional equation to an n-dimensional version,

$$\sum_{i=1}^{n} p_i f(x_i) = f\left(\sum_{i=1}^{n} p_i x_i \right),$$

(1.1)

where $n > 1$ is an integer, and p_1, \ldots, p_n are positive rational numbers with

$$\sum_{i=1}^{n} p_i = 1,$$

(1.2)

will study a general solution and investigate its generalized stability. We will also discuss Hyers-Ulam stability and Hyers-Ulam-Rassias stability.

For our convenience, we let $n > 1$ be an integer, p_1, \ldots, p_n be positive rational numbers with (1.2). X be a real vector space and Y be a Banach spaces.

2 Main Results

In this section, we will study the general solution and generalized stability of (1.1). The results are as follows.
2.1 General Solution

Theorem 2.1. Let \(X \) and \(Y \) be real vector spaces. A mapping \(f : X \to Y \) satisfies the functional equation (1.1) where \(n > 1 \) is an integer, and \(p_1, \ldots, p_n \) are positive rational numbers with \(\sum_{i=1}^{n} p_i = 1 \) for all \(x_1, \ldots, x_n \in X \), if and only if \(f(x) = A(x) - f(0) \) for all \(x \in X \) where \(A : X \to Y \) is additive function and \(f(0) \) is a constant.

Proof. (Necessity) Suppose \(f : X \to Y \) satisfies the functional equation (1.1). Define a function \(g : X \to Y \) by

\[
g(x) = f(x) - f(0)
\]

for all \(x \in X \). Note that \(g(0) = 0 \).

Consider

\[
g\left(\sum_{i=1}^{n} p_i x_i \right) = f\left(\sum_{i=1}^{n} p_i x_i \right) - f(0) = \sum_{i=1}^{n} p_i f(x_i) - f(0)
\]

\[
= \sum_{i=1}^{n} p_i g(x_i).
\]

Thus \(g \) is satisfies (1.1). Let \(s \in \{1, \ldots, n\} \). Then set \(x_s = x \) and \(x_1 = \ldots = x_{s-1} = x_{s+1} = \ldots = x_n = 0 \), then (2.1) becomes

\[
g(p_s x) = p_s g(x) \quad \text{for all} \quad s \in \{1, \ldots, n\} \quad \text{for all} \quad x \in X.
\]

Next, we put \(x_s = x, x_{s+1} = y \) and \(x_1 = \ldots = x_{s-1} = x_{s+2} = \ldots = x_n = 0 \) in (2.1) and using (2.2), we will have

\[
g(p_s x + p_{s+1} y) = p_s g(x) + p_{s+1} g(y)
\]

for all \(x, y \in X \). Therefore \(g \) is additive function, by definition of \(g \) we get \(f(x) = A(x) - f(0) \) for all \(x \in X \).

(Sufficiency) Suppose \(f(x) = A(x) - f(0) \) for all \(x \in X \) where \(A : X \to Y \) is additive function and \(f(0) \) is a constant. Then,

\[
f\left(\sum_{i=1}^{n} p_i x_i \right) = A\left(\sum_{i=1}^{n} p_i x_i \right) - f(0) = \sum_{i=1}^{n} p_i A(x_i) - \sum_{i=1}^{n} p_i f(0)
\]

\[
= \sum_{i=1}^{n} p_i (A(x_i) - f(0)) = \sum_{i=1}^{n} p_i f(x_i).
\]

This completes the proof. \(\Box \)
2.2 Generalized Stability

Theorem 2.2. Let \(\phi : X^n \to [0, \infty) \) be a function. For each integer \(s = 1, \ldots, n \), let \(\phi_s : X \to [0, \infty) \) be a function such that

\[
\phi_s(x) = \phi(0, \ldots, 0, x, 0, \ldots, 0)
\]

(2.3)

and \(\sum_{i=0}^{\infty} p_s^{-i} \phi(p_i x) \) converges and \(\lim_{m \to \infty} p_s^{-m} \phi(p_s^m x_1, \ldots, p_s^m x_n) = 0 \) for all \(x_1, \ldots, x_n \in X \).

If a function \(f : X \to Y \) satisfies the inequality

\[
\sum_{i=1}^{n} p_i f(x_i) - f\left(\sum_{i=1}^{n} p_i x_i\right) \leq \phi(x_1, \ldots, x_n)
\]

(2.4)

for all \(x_1, \ldots, x_n \in X \), then there exists a unique function \(L : X \to Y \) that satisfies functional equation (1.1) and the inequality

\[
\|f(x) - L(x)\| \leq \sum_{i=0}^{\infty} p_s^{-i-1} \phi_s(p_i x)
\]

(2.5)

for all \(x \in X \). The function \(L \) is given by

\[
L(x) = f(0) + \lim_{m \to \infty} p_s^{-m} (f(p_s^m x) - f(0))
\]

(2.6)

for all \(x \in X \).

Proof. Suppose \(f : X \to Y \) satisfies the inequality (2.4). Define a function \(g : X \to Y \) by

\[
g(x) = f(x) - f(0)
\]

(2.7)

for all \(x_1, \ldots, x_n \in X \). It should be noted that \(g(0) = 0 \). By (1.2), we get

\[
\sum_{i=1}^{n} p_i g(x_i) - g\left(\sum_{i=1}^{n} p_i x_i\right) \leq \phi(x_1, \ldots, x_n)
\]

(2.8)

for all \(x_1, \ldots, x_n \in X \). Let \(s \in \{1, \ldots, n\} \). Set \(x_s = x \) and \(x_1 = \cdots = x_{s-1} = x_{s+1} = \cdots = x_n = 0 \), then (2.8) becomes

\[
\|p_s g(x) - g(p_s x)\| \leq \phi_s(x)
\]

(2.9)

for all \(x \in X \). Rewrite the above equation to

\[
\|g(x) - p_s^{-1} g(p_s x)\| \leq p_s^{-1} \phi_s(x)
\]

(2.10)
The Generalized Stability of an n-Dimensional Jensen ... 269

for all \(x \in X \). For each positive integer \(m \) and each \(x \in X \), we have

\[
\| g(x) - p_s^{-m} g(p_s^m x) \| = \left\| \sum_{i=0}^{m-1} \left(p_s^{-i} g(p_s^i x) - p_s^{-(i+1)} g(p_s^{i+1} x) \right) \right\|
\leq \sum_{i=0}^{m-1} \| p_s^{-i} g(p_s^i x) - p_s^{-(i+1)} g(p_s^{i+1} x) \|
= \sum_{i=0}^{m-1} p_s^{-i} \| g(p_s^i x) - p_s^{-1} g(p_s p_s^i x) \|
\leq \sum_{i=0}^{m-1} p_s^{-i-1} \phi_s(p_s^i x). \tag{2.11}
\]

Consider the sequence \(\{p_s^{-m} g(p_s^m x)\} \). For each positive integers \(k < l \) and each \(x \in X \),

\[
\| p_s^{-k} g(p_s^k x) - p_s^{-l} g(p_s^l x) \| = p_s^{-k} \| g(p_s^k x) - p_s^{-(l-k)} g(p_s^{l-k} p_s^k x) \|
\leq p_s^{-k} \sum_{i=0}^{l-k-1} p_s^{-i} \phi_s(p_s^{i+k} x)
\leq p_s^{-k-1} \sum_{i=0}^{\infty} p_s^{-i} \phi_s(p_s^{i+k} x).
\]

Since \(\sum_{i=0}^{\infty} p_s^{-i} \phi_s(p_s^i x) \) converges, \(\lim_{k \to \infty} p_s^{-k-1} \sum_{i=0}^{\infty} p_s^{-i} \phi_s(p_s^{i+k} x) = 0 \); therefore,

\[
L(x) = f(0) + \lim_{m \to \infty} p_s^{-m} g(p_s^m x) \tag{2.12}
\]

is well-defined in the Banach space \(Y \). Moreover, as \(m \to \infty \), (2.11) becomes

\[
\| g(x) + f(0) - L(x) \| \leq \sum_{i=0}^{\infty} p_s^{-i-1} \phi_s(p_s^i x).
\]

Recalling the definition of \(g(x) \), we see that inequality (2.5) is valid.

To show that \(L \) indeed satisfies (1.1), replace each \(x_i \) in (2.8) with \(p_s^m x_i \),

\[
\left\| \sum_{i=1}^{n} p_i g(p_s^m x_i) - g \left(\sum_{i=1}^{n} p_i x_i \right) \right\| \leq \phi(p_s^m x_1, \ldots, p_s^m x_n). \tag{2.13}
\]

If we multiply the above inequality by \(p_s^{-m} \) and take the limit as \(m \to \infty \), then by the definition of \(L \) in (2.12) and (1.2), we obtain

\[
\left\| \sum_{i=1}^{n} p_i L(x_i) - L \left(\sum_{i=1}^{n} p_i x_i \right) \right\| \leq \lim_{m \to \infty} p_s^{-m} \phi(p_s^m x_1, \ldots, p_s^m x_n) = 0, \tag{2.14}
\]
which implies that
\[
\sum_{i=1}^{n} p_i L(x_i) = L \left(\sum_{i=1}^{n} p_i x_i \right) \tag{2.15}
\]
for all \(x_1, \ldots, x_n \in X\).

To prove the uniqueness, suppose there is another function \(L' : X \to Y\) satisfying (1.1) and (2.5). Observe that if we replace \(x_s\) by \(x\) and put \(x_1 = \cdots = x_{s-1} = x_{s+1} = \cdots = x_n = 0\) in (2.15), then
\[
p_s L(x) + (1 - p_s) L(0) = L(p_s x) \tag{2.16}
\]
for all \(x \in X\), and
\[
L(0) = f(0) + \lim_{m \to \infty} p_s^{-m} g(0) = f(0).
\]
The function \(L'\) obviously possesses the same properties. Therefore,
\[
p_s (L(x) - L'(x)) = L(p_s x) - L'(p_s x) \tag{2.17}
\]
for all \(x \in X\). We can prove by mathematical induction that for each positive integer \(m\),
\[
p_s^m (L(x) - L'(x)) = L(p_s^m x) - L'(p_s^m x)
\]
for all \(x \in X\). Therefore, for each positive integer \(m\),
\[
\|L(x) - L'(x)\| = p_s^{-m} \|L(p_s^m x) - L'(p_s^m x)\|
\leq p_s^{-m} (\|L(p_s^m x) - f(p_s^m x)\| + \|L'(p_s^m x) - f(p_s^m x)\|)
\leq 2p_s^{-m} \sum_{i=0}^{\infty} p_s^{-i} \phi_s(p_s^{i+m} x)
\]
for all \(x \in X\). Since \(\sum_{i=0}^{\infty} p_s^{-i} \phi(p_s^i x)\) converges, \(\lim_{m \to \infty} p_s^{-m} \sum_{i=0}^{\infty} p_s^{-i} \phi(p_s^{i+m} x) = 0\).

We conclude that \(L(x) = L'(x)\) for all \(x \in X\). \(\square\)

Theorem 2.3. Let \(\phi : X^n \to [0, \infty)\) be a function. For each integer \(s = 1, \ldots, n\), let \(\phi_s : X \to [0, \infty)\) be a function such that (2.3) and \(\sum_{i=0}^{\infty} p_s^{-i} \phi(p_s^{-i} x)\) converges and \(\lim_{m \to \infty} p_s^m \phi(p_s^{-m} x_1, \ldots, p_s^{-m} x_n) = 0\) for all \(x_1, \ldots, x_n \in X\). If a function \(f : X \to Y\) satisfies the inequality (2.4) then there exists a unique function \(L : X \to Y\) that satisfies functional equation (1.1) and the inequality
\[
\|f(x) - L(x)\| \leq \sum_{i=1}^{\infty} p_s^{-i} \phi_s(p_s^{-i} x) \tag{2.18}
\]
for all \(x \in X \). The function \(L \) is given by

\[
L(x) = f(0) + \lim_{m \to \infty} p_s^m f(p_s^{-m} x)
\]
(2.19)

for all \(x \in X \).

Proof. Let \(f : X \to Y \) satisfy the inequality \((2.4) \). Referring the process \((2.7)-(2.10) \), we can replace inequality \((2.10) \) with

\[
\| g(x) - p_s g(p_s^{-1} x) \| \leq \phi_s(p_s^{-1} x)
\]

for all \(x \in X \). For each positive integer \(m \) and each \(x \in X \), we get

\[
\| g(x) - p_s^m g(p_s^{-m} x) \| = \left(\sum_{i=1}^{m} p_s^{i-1} g(p_s^{-(i-1)} x) - p_s^i g(p_s^{-i} x) \right)
\leq \sum_{i=1}^{m} \| p_s^{i-1} g(p_s^{-(i-1)} x) - p_s^i g(p_s^{-i} x) \|
= \sum_{i=1}^{m} \| p_s^{i-1} \| g(p_s^{-(i-1)} x) - p_s^i g(p_s^{-i} x) \|
\leq \sum_{i=1}^{m} p_s^{i-1} \phi_s(p_s^{-i} x).
\]
(2.20)

We investigate the sequence \(\{ p_s^m g(p_s^{-m} x) \} \). For each positive integer \(k < l \) and each \(x \in X \),

\[
\| p_s^k g(p_s^{-k} x) - p_s^l g(p_s^{-l} x) \| = p_s^k \| g(p_s^{-k} x) - p_s^l g(p_s^{-l} k p_s^{-k} x) \|
\leq p_s^k \sum_{i=1}^{l-k} p_s^{i-1} \phi_s(p_s^{-i-k} x)
\leq p_s^{l-1} \sum_{i=0}^{\infty} p_s^i \phi_s(p_s^{-i-k} x).
\]

Since \(\sum_{i=0}^{\infty} p_s^i \phi_s(p_s^{-i} x) \) converges, \(\lim_{k \to \infty} p_s^{k-1} \sum_{i=0}^{\infty} p_s^i \phi_s(p_s^{-i-k} x) = 0 \). Thus,

\[
L(x) = f(0) + \lim_{m \to \infty} p_s^m g(p_s^{-m} x)
\]
(2.21)

is well-defined in the Banach space \(Y \). Furthermore, \((2.20) \) becomes as \(m \to \infty \),

\[
\| g(x) + f(0) - L(x) \| \leq \sum_{i=1}^{\infty} p_s^{i-1} \phi_s(p_s^{-i} x).
\]

By the definition of \(g(x) \), inequality \((2.18) \) is valid.
In order to show that L satisfies (1.1), we replace each x_i by $p_s^{-m}x_i$ in (2.15) and multiply p_s^m, then take the limit as $m \to \infty$, we have
\[
\left\| \sum_{i=1}^{n} p_i L(x_i) - L \left(\sum_{i=1}^{n} p_i x_i \right) \right\| \leq \lim_{m \to \infty} p_s^m \phi(p_s^{-m}x_1, \ldots, p_s^{-m}x_n) = 0,
\]
which implies (2.15).

To prove the uniqueness, suppose there is another function $L' : X \to Y$ satisfying (1.1) and (2.5). Replacing x by $p_s^{-1}x$ and put $x_1 = \cdots = x_{s-1} = x_{s+1} = \cdots = x_n = 0$ in (2.15); consequently, (2.17) becomes
\[
p_s(L(p_s^{-1}x) - L'(p_s^{-1}x)) = L(x) - L'(x).\]
For each positive m, we can show by mathematical induction that
\[
p_s^m (L(p_s^{-m}x) - L'(p_s^{-m}x)) = L(x) - L'(x)
\]
for all $x \in X$. Therefore, for each positive integer m,
\[
\left\| L(x) - L'(x) \right\| = p_s^m \left\| L(p_s^{-m}x) - L'(p_s^{-m}x) \right\|
\leq p_s^m \left(\left\| L(p_s^{-m}x) - f(p_s^{-m}x) \right\| + \left\| L'(p_s^{-m}x) - f(p_s^{-m}x) \right\| \right)
\leq 2p_s^m \sum_{i=1}^{\infty} p_s^{-i-m} \phi(p_s^{-i}x)
\]
for all $x \in X$. Since $\sum_{i=1}^{\infty} p_s^i \phi(p_s^{-i}x)$ converges, $\lim_{m \to \infty} p_s^m \sum_{i=0}^{\infty} p_s^{-i-m} \phi(p_s^{-i-m}x) = 0$. We obtain that $L(x) = L'(x)$ for all $x \in X$. \qed

2.3 Stability

This section will give the stability of (1.1) in various case. The following theorem proves stability of (1.1).

\textbf{Theorem 2.4.} Let $\varepsilon > 0$ be a real number. If a function $f : X \to Y$ satisfies the inequality
\[
\left\| \sum_{i=1}^{n} p_i f(x_i) - f \left(\sum_{i=1}^{n} p_i x_i \right) \right\| \leq \varepsilon
\]
for all $x_1, \ldots, x_n \in X$, then there exists a unique function $L : X \to Y$ that satisfies (1.1) and
\[
\left\| f(x) - L(x) \right\| \leq \frac{\varepsilon}{1 - p_{\text{min}}}
\]
for all $x \in X$, where $p_{\text{min}} = \min\{p_1, \ldots, p_n\}$.

Proof. Let
\[\phi(x_1, \ldots, x_n) = \varepsilon \]
for all \(x_1, \ldots, x_n \in X \) in Theorem 2.3. We can see that Theorem 2.3 holds for every \(s = 1, \ldots, n \). We choose \(s \) such that \(p_s = p_{\text{min}} = \min\{p_1, \ldots, p_n\} \). Then (2.18) becomes
\[\|f(x) - L(x)\| \leq \varepsilon \sum_{i=1}^{n} p_s^{i-1} = \frac{\varepsilon}{1 - p_s} = \frac{\varepsilon}{1 - p_{\text{min}}} \]
for all \(x \in X \) as desired. \(\square \)

The following theorem proves the stability of (1.1).

Theorem 2.5. Let \(\varepsilon > 0 \) and \(r > 0 \) be real numbers with \(r \neq 1 \). If a function \(f : X \to Y \) satisfies the inequality
\[\left\| \sum_{i=1}^{n} p_i f(x_i) - f \left(\sum_{i=1}^{n} p_i x_i \right) \right\| \leq \varepsilon \sum_{i=1}^{n} \|x_i\|^r \]
for all \(x_1, \ldots, x_n \in X \), then there exists a unique function \(L : X \to Y \) that satisfies (1.1) and
\[\|f(x) - L(x)\| \leq \frac{\varepsilon}{M} \|x\|^r \]
for all \(x \in X \), where \(M = \max_{i=1,\ldots,n} |p_i - p_i^r| \).

Proof. In the case \(0 < r < 1 \), let
\[\phi(x_1, \ldots, x_n) = \varepsilon \sum_{i=1}^{n} \|x_i\|^r \]
for all \(x_1, \ldots, x_n \in X \) in Theorem 2.3. Then we can see that Theorem 2.3 holds for every \(s = 1, \ldots, n \). We choose \(s \) such that
\[|p_s - p_s^r| = M = \max_{i=1,\ldots,n} |p_i - p_i^r| . \]
Thus, (2.5) becomes
\[
\|f(x) - L(x)\| \leq \varepsilon \sum_{i=1}^{n} p_s^{i-1} \|x_i\|^r \leq \varepsilon \sum_{i=1}^{n} p_s^{i(1-r)} \sum_{i=1}^{n} p_s^{(1-r)} \|x_i\|^r \leq \varepsilon \max_{i=1,\ldots,n} |p_i - p_i^r| \|x\|^r \leq \varepsilon \frac{1}{M} \|x\|^r \]
for all \(x \in X \). In the case \(r > 1 \), let
\[\phi(x_1, \ldots, x_n) = \varepsilon \sum_{i=1}^{n} \|x_i\|^r \]
for all $x_1, \ldots, x_n \in X$ in Theorem 2.1. Since Theorem 2.1 holds for every $s = 1, \ldots, n$, (2.5) becomes

$$
\|f(x) - L(x)\| \leq \varepsilon \sum_{i=0}^{\infty} p_s^{-i-1} \|p_s^i x\|^r = \varepsilon \|x\|^r \sum_{i=0}^{\infty} p_s^{i(r-1)}
$$

$$
= \varepsilon \|x\|^r p_s^{-1}\left(\frac{1}{1 - p_s^r}\right) = \frac{\varepsilon}{p_s^r - p_s} \|x\|^r = \frac{\varepsilon}{M} \|x\|^r
$$

for all $x \in X$. This completes the proof. \qed

References

(Received 13 June 2013)
(Accepted 26 October 2013)