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Exact Solutions of The Regularized Long-Wave
Equation: The Hirota Direct Method
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Abstract : The Hirota direct method has been used to obtain analytic solutions of
the regularized long-wave equation (nonlinear evolution and wave equations) which
constructing the soliton (solitary) solution of the regularized long-wave equation
(RLW) is presented. We considered a transformation of the RLW equation to the
Hirota bilinear form and applied the Hirota perturbation to this equation. The
obtained results are exact one-solitary wave solutions of RLW.
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1 Introduction

The regularized long-wave (RLW) equation is famous nonlinear wave equation
which gives the phenomena of dispersion and weak nonlinearity, including magneto
hydrodynamic wave in plasma, phonon packets in nonlinear crystals, and nonlinear
transverse waves in shallow water or in ion-acoustic. In 1971 [5], Ryogo Hirota
developed the Hirota direct method, he applied the method to construct multi-
solitons of the Korteweg-de Vries (KdV) equation for multiple collisions of solitons
which is integrable nonlinear partial differential equations. These solutions are the
elastic collision of soliton solutions. That is the RLW equation; it is non-integrable
which different from the KdV equation. The KdV equation is

ut + uux − uxxx = 0 (1.1)

From the RLW equation, we obtain the solitary waves which are inelastic
[7]. In 2006, Pekcan [2] applied the Hirota direct method to find solutions of
non-integrable equations and also described the extensions of the Kadomtsev-
Petviashvili (KP) and the Boussinesq (Bo) equations. Those mentioned papers
related in integrable equations, but in this research we applied the Hirota method
to construct solitary waves of incompletely integrable nonlinear partial differential
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equation that is the RLW equation. This equation is

ut + uux − uxxt = 0 (1.2)

The processes to evaluate this equation are the same as that has shown in
the reference paper [2] (section 1.1) as follows, the first step of this method is to
transform the RLW equation into a quadratic form in the independent variables.
The new form of the equation is called ’bilinear form’. In the second step, we write
the bilinear form of this equation as a polynomial of a special differential operator,
Hirota D-operator. This polynomial of D-operator is called ’Hirota bilinear form’.
The last step of the method was using the finite perturbation expansion in the
Hirota bilinear form and analyzed the coefficients of the perturbation parameter
and its powers separately. Here the information we gained makes us to reach the
exact solution of the equation.

Let us show that the Hirota method worked and referred to the section 1.1 of
Pekcan [2] as follows.

2 Preliminaries

We reviewed the Hirota direct method in four steps by following Hietarinta’s ar-
ticle [4] . Let F [u] = F (u, ux, ut, ...) be a nonlinear partial differential equation.

Step 1: Bilinearization: Transform F[u] to a quadratic form in the dependent
variables by a bilinearizing transformation u = T (f(x, t, ...), g(x, t, ...)) and called
this form the bilinear form of F [u]. Note that for some equations we may not be
found such a transformation.

Step 2: Transformation to the Hirota bilinear form:

Definition 2.1. Let S : Cn → C be a space of differentiable functions. Then
Hirota D-operator D : S → S is defined as

[Dm1
x Dm2

t . . .]{f · g} = [(∂x − ∂x′)(∂t − ∂t′)]f(x, t, . . .) · g(x′, t′, . . .)|x′=x,t′=t (2.1)

where mi, i = 1, 2, . . . are positive integers and x, t, . . . are independent vari-
ables.

By using some sort of combination of Hirota D-operator, we try to write the
bilinear form of F [u] as a polynomial of D-operator, say P (D). Let us state some
propositions and corollaries on P (D) [4].

Proposition 2.2. Let P (D) act on two differentiable functions f(x, t, . . .) and
g(x, t, . . .) . Then we have

P (D){f · g} = P (−D){g · f}. (2.2)
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Corollary 2.3. Let P (D) act on two differentiable functions f(x, t, . . .) and
g = 1 then we have

P (D){f · 1} = P (∂)f, P (D){1 · f} = P (−∂)f. (2.3)

Proposition 2.4. Let P (D) act on two differentiable functions eθ1 and eθ2

where θi = kix + ωit + . . . + αi with ki, ωi, . . . , αi are constants for i = 1, 2. Then
we have

P (D){eθ1 · eθ2} = P (k1 − k2, . . . , α1 − α2)eθ1+θ2 . (2.4)
For a shorter notation, we use P (p1 − p2) instead of P (k1 − k2, . . . , α1 − α2)

Corollary 2.5. If we have P (D){a · a} = 0 where a is any nonzero constant,
then we have P (0, 0, . . .) = 0.

Definition 2.6. We say that a nonlinear partial differential equation can be
written in Hirota bilinear form if it is equivalent to

m∑

α,β=1

P η
αβ(D)fαfβ = 0, η = 1, . . . , r (2.5)

for some m, r and linear operators P η
αβ(D). The f i ’s are new dependent

variables.
Remark 2.7. There is no systematic way to write a nonlinear partial differ-

ential equation in Hirota bilinear form.
Remark 2.8. For some nonlinear partial differential equations we may need

more than one Hirota bilinear equation.

Step 3: Application of the Hirota perturbation: We substitute the finite per-
turbation expansions of the differentiable functions f(x, t, . . .) and g(x, t, . . .) which
are

f(x, t, . . .) = f0+
N∑

m=1

εmfm(x, t, . . .), g(x, t, . . .) = g0+
N∑

m=1

εmgm(x, t, . . .) (2.6)

into the Hirota bilinear form. Here to avoid the trivial solution f0, g0 are
constants with the condition (f0, g0) 6= (0, 0). For the sake of applicability of the
method we take the functions fm and gm, m = 1, . . . , N as exponential functions.
The ε is constant called the perturbation parameter. For instance for N = 2, we
take

f = f0 + εf1 + ε2f2, g = g0 + εg1 + ε2g2 (2.7)
where f1 = eθ1 + eθ2 for θi = kix + ωit + . . . , i = 1, 2. We can decide the other

terms of the functions f and g in the process of the method.

Step 4: Examination of the coefficients of the perturbation parameter ε: We
make the coefficients of the perturbation parameter ε and its powers appeared in
the Hirota perturbation to vanish. From these coefficients we obtain the functions
f(x, t, . . .) and g(x, t, . . .). Hence by using them in the bilinearizing transformation
u = T [f(x, t, . . .), g(x, t, . . .)], we find the exact solution of F [u].
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3 The regularized long-wave (RLW) equation

In this section we applied the Hirota direct method to solve the regularized long-
wave equation in Eq.(2).

Step 1. Bilinearized : We used the transformation

v(x, t) = 4
∂2

∂x2
ln f(x, t), (3.1)

for the RLW equation.
Assume that u = u0 + v, thus v corresponds Eq.(2) in the form

vt + u0vx + vvx − vxxt = 0. (3.2)

Let
F (x, t) = 4

∂

∂x
ln f(x, t), (3.3)

and v = Fx. Substitute v = Fx into Eq.(11), then we have

Fxt + u0Fxx + FxFxx − Fxxxt = 0, (3.4)

Integrate Eq. (13) with respect to x yields

Ft + u0Fx +
1
2
(Fx)2 − Fxxt + a(t) = 0, (3.5)

where a(t) is arbitrary function.
Substitute Eq.(12) into Eq.(14), we get

(ln f)xt + u0(ln f)xx + 2[(ln f)xx]2 − (ln f)xxxt +
1
2
b(t) = 0. (3.6)

Hence from Eq.(15), becomes

(ffxt − fxft) + u0(ffxx − fxfx) + 2
f2 [ffxx − fxfx]2 − [ffxxxt − ffxxx

−3(fxxfxt + fxxfx)]− 6
f2

[fxxfxft + f2
xft] +

6
f2

[f3
xft] +

1
2
b(t) = 0.

(3.7)

Step 2. Transformation to the bilinear form: We use the Hirota method and
write the bilinear form of the RLW equation in the Hirota bilinear form.

We consider DxDt applied on the product of f · f ,

DxDt{f · f} = ( ∂
∂x − ∂

∂x′ )(
∂
∂t − ∂

∂t′ ){f(x, t) · f(x′, t′)}|x′=x,t′=t
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= fxtf + ffxt − ftfx − fxft

= 2(ffxt − ftfx), (3.8)

considerD2
x,

D2
x{f · f} = ( ∂

∂x − ∂
∂x′ )

2{f(x, t) · f(x′, t′)}|x′=x,t′=t

= 2(ffxx − (fx)2), (3.9)

and consider D2
xDt

D3
xDt{f · f} = ( ∂

∂x − ∂
∂x′ )

3( ∂
∂t − ∂

∂t′ ){f(x, t) · f(x′, t′)}|x′=x,t′=t

= 2[ffxxxt − fxxxft)− 3fxfxxt + 3fxxfxt], (3.10)

Thus the Eq.(16) can be written in the bilinear form

P (D){f · f} = (DxDt + u0D
2
x −D3

xDt + b){f · f}

+
1
f2

D2
x{f · f}(D2

x + 3DxDt){f · f} = 0. (3.11)

Suppose that

c(x, t) =
1
f2

D2
x(D2

x + 3DxDt){f · f}, (3.12)

and Eq.(20) becomes the bilinear equation

[DxDt + (u0 + c)D2
x −D3

xDt + b]{f · f} = 0. (3.13)

Thus from Eq.(21) and (22), yield

(D2
x + 3DxDt − c){f · f} = 0. (3.14)

Compare Eq.(22) and (23) with the bilinear form of the KdV equation (1)
which corresponding the bilienear form of the RLW equation (i.e. Eq.(22) and
(23)). We see that the RLW equation (1.2) transforms to the KdV equation (2).
That is, let t → x in the third term into Eq.(22) and set c = 0, u0 = 1 to get

[DxDt + D2
x −D4

x + b]{f · f} = 0. (3.15)

Step 3. Application the finite perturbation expansion in the bilinear form:
Insert f = 1 + εf1 + ε2f2 + . . . into Eq.(24), we get

P (D){f · f} = P (D){1 · 1}+ εP (D){f1 · 1 + 1 · f1}

+ε2P (D){f2 · 1 + f1 · f1 + 1 · f2}+ . . . = 0, (3.16)

where ε is a constant of the perturbation parameter.
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4 Solitary solution of the RLW equation

One-solitary solution

Constructing one-solition (solitary) solution, let f = 1 + εf1 where f1 = eθ1

and θ1 = k1x + ω1t + . . . + α1. Note that fj = 0 for all j ≥ 2 Performing the
coefficients εm, m = 0, 1, 2 vanish.

Substitute f into the Eq.(24) with b(t) we have the coefficient ε0 that is

P (D)(0, 0, . . .) = 0 since P (D){1 · 1} = 0. (4.1)

For the coefficient ε1,

P (D){f1 · 1 + 1 · f1} = P (∂)eθ1 + P (−∂)eθ1

= 2P (p1)eθ1 = 0. (4.2)

Therefore, we get the dispersion P (p1) = 0, and the coefficient ε2 also vanish,
because of

P (D){f1 · f1} = P (D){eθ1 · eθ1}

= 2P (p1 − p1)e2θ1 = 0. (4.3)

Hence we can define ε (without loss of generality) so f = 1 + εeθ1 Using the
results of the Hirota method, it is necessary thatb(t) = 0 and

ω1k1 + k2
1 − k4

1 = 0, or

ω1 = k3
1 − k1. (4.4)

From Eq.(2), we have one-solitary solution of the RLW equation

u(x, t) = 4
∂2

∂x2
ln(1 + eθ1) = k2

1sech
2(

1
2
θ1). (4.5)

[sech2:Hyperbolic secant]

5 Conclusions

One-solitary wave solutions of the regularized long-wave equation that is
the non-completely integrable nonlinear partial differential equation can be con-
structed by using the Hirota direct method.
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