$\Lambda^2$-statistical convergence and its application to Korovkin second theorem

Naim Braha

Abstract


In this paper, we use the notion of strong $(N, \lambda^2)-$summability to generalize the concept of statistical convergence. We call this new method a $\lambda^2-$statistical convergence and denote by $S_{\lambda^2}$ the set of sequences which are $\lambda^2-$statistically convergent. We find its relation to statistical convergence and strong $(N, \lambda^2)-$summability. We will define a new sequence space and will show that it is Banach space. Also we will prove the second Korovkin type approximation theorem for $\lambda^2$-statistically summability and the rate of $\lambda^2$-statistically summability of a sequence of positive linear operators defined from $C_{2\pi}(\mathbb{R})$ into $C_{2\pi}(\mathbb{R}).$


Refbacks

  • There are currently no refbacks.


The Thai Journal of Mathematics organized and supported by The Mathematical Association of Thailand and Thailand Research Council and the Center for Promotion of Mathematical Research of Thailand (CEPMART).

Copyright 2020 by the Mathematical Association of Thailand.

All rights reserve. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission of the Mathematical Association of Thailand.

|ISSN 1686-0209|