Generalized Quasilinearization Method and Cubical Convergence for Mixed Boundary Value Problems

Ramzi S. N. Alsaedi


The generalized quasilinearization method for a non-linear secondorder ordinary differential equation with mixed boundary conditions has been studied when the forcing function is the sum of two functions without require that any of the two functions involved to be 2-hyperconvex or 2-hyperconcave. Two sequences are developed under suitable conditions which converge to the unique solution of the boundary value problem. Furthermore, the convergence obtain here is of order 3.

Full Text: PDF


  • There are currently no refbacks.

The Thai Journal of Mathematics organized and supported by The Mathematical Association of Thailand and Thailand Research Council and the Center for Promotion of Mathematical Research of Thailand (CEPMART).

Copyright 2020 by the Mathematical Association of Thailand.

All rights reserve. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission of the Mathematical Association of Thailand.

|ISSN 1686-0209|