Regular Transformation Semigroups on Some Dictionary Chains

W. Mora, Y. Kemprasit

Abstract


Denote by OT(X) the full order-preserving transformation semigroup on a poset X. The following results are known. If X is any nonempty subset of $\mathbb{Z}$ with the natural order, then OT(X) is a regular semigroup, that is, for every $\alpha\in OT(X), \alpha = \alpha\beta\alpha$ for some $\beta\in OT(X)$. If $\leq_d$ is the dictionary partial order on $X \times X$ where X is a nonempty subset of $\mathbb{Z}$, then $OT(X\times X, \leq_d)$ is regular if nd only if

X is finite. By using these two known results, we extend the second

one to the semigroup $OT(X\times Y, \leq_d)$ where X and Y are nonempty subsets of $\mathbb{Z}$. It is shown that $OT(X\times Y, \leq_d)$ is regular if and only if $|X| = 1$ or Y is finite.


Full Text: PDF

Refbacks

  • There are currently no refbacks.


The Thai Journal of Mathematics organized and supported by The Mathematical Association of Thailand and Thailand Research Council and the Center for Promotion of Mathematical Research of Thailand (CEPMART).

Copyright 2020 by the Mathematical Association of Thailand.

All rights reserve. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission of the Mathematical Association of Thailand.

|ISSN 1686-0209|