### Meromorphic Functions that share two finite values with their derivative (II)

*Ungsana Chundang, Suchai Tanaiadchawoot*

#### Abstract

The purpose of this paper is to study a meromorphic functions which

share two finite nonzero values with their derivatives, and the result is proved: Let $f$ be a nonconstant meromorphic function, *a, b * be a nonzero distinct finite complex constant. If $f$ and $f'$ share *a *CM, and share *b *IM and $N_{(2(r,\frac{1}{f'-b}}=S(r,f)$ then $f=f'$.

Full Text:

PDF
### Refbacks

- There are currently no refbacks.

**The Thai Journal of Mathematics ***organized and supported by *The Mathematical Association of Thailand and Thailand Research Council and the Center for Promotion of Mathematical Research of Thailand (CEPMART).

**Copyright** 2020 by the Mathematical Association of Thailand.

All rights reserve. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission of the Mathematical Association of Thailand.

|ISSN 1686-0209|