Meromorphic Functions that share two finite values with their derivative (II)

Ungsana Chundang, Suchai Tanaiadchawoot


The purpose of this paper is to study a meromorphic functions which

share two finite nonzero values with their derivatives, and the result is proved: Let $f$ be a nonconstant meromorphic function, a, b be a nonzero distinct finite complex constant. If $f$ and $f'$ share a CM, and share b IM and $N_{(2(r,\frac{1}{f'-b}}=S(r,f)$ then $f=f'$.


Full Text: PDF


  • There are currently no refbacks.

The Thai Journal of Mathematics organized and supported by The Mathematical Association of Thailand and Thailand Research Council and the Center for Promotion of Mathematical Research of Thailand (CEPMART).

Copyright 2020 by the Mathematical Association of Thailand.

All rights reserve. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission of the Mathematical Association of Thailand.

|ISSN 1686-0209|