A Modified Eighth-Order Derivative-Free Root Solver

Fazlollah Soleymani, S. Karimi Vanani

Abstract


This paper proposes a modified technique for solving nonlinear equations. The technique is fully free from derivative calculation per full cycle and consumes only four pieces of function evaluations to reach the local convergence rate eight. This shows that our technique is optimal due to the conjecture of Kung and Traub. The contributed class is built by using weight function approach. In the sequel, theoretical results are given and finally numerical examples are employed to evaluate and illustrate the accuracy of the novel methods derived of the modified technique.

Full Text: PDF

Refbacks

  • There are currently no refbacks.


The Thai Journal of Mathematics organized and supported by The Mathematical Association of Thailand and Thailand Research Council and the Center for Promotion of Mathematical Research of Thailand (CEPMART).

Copyright 2020 by the Mathematical Association of Thailand.

All rights reserve. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission of the Mathematical Association of Thailand.

|ISSN 1686-0209|