Orbits for Products of Maps

Apisit Pakapongpun, Thomas Ward


We study the behaviour of the dynamical zeta function and the orbit Dirichlet series for products of maps. The behaviour under products of the radius of convergence for the zeta function, and the abscissa of convergence for the orbit Dirichlet series, are discussed. The orbit Dirichlet series of the cartesian cube of a map with one orbit of each length is shown to have a natural boundary.

Full Text: PDF


  • There are currently no refbacks.

The Thai Journal of Mathematics organized and supported by The Mathematical Association of Thailand and Thailand Research Council and the Center for Promotion of Mathematical Research of Thailand (CEPMART).

Copyright 2020 by the Mathematical Association of Thailand.

All rights reserve. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior permission of the Mathematical Association of Thailand.

|ISSN 1686-0209|