Approximation Method for Fixed Points of Nonlinear Mapping and Variational Inequalities with Application

Kanyarat Cheawchan and Atid Kangtunyakarn

Department of Mathematics, Faculty of Science
King Mongkut’s Institute of Technology Ladkrabang
Bangkok 10520, Thailand

Abstract: In this paper, we introduce the new method of iterative scheme \(\{x_n\} \) for finding a common element of the set of fixed points of a quasi-nonexpansive mapping and the set of solutions of a modified system of variational inequalities without demiclose condition and \(T_\omega := (1 - \omega)I + \omega T \), when \(T \) is a quasi-nonexpansive mapping and \(\omega \in (0, \frac{1}{2}) \) in a framework of Hilbert space. Using our main result, we obtain strong convergence theorems involving a finite family of nonspreading mapping and another corollary.

Keywords: quasi-nonexpansive mapping; variational inequality; fixed point; nonspreading mapping.

2010 Mathematics Subject Classification: 46C05; 47H09; 47H10.

1 Introduction

Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \). We denote \(F(T) \) by the set of all fixed points of \(T \). Recall that the mapping \(T : C \to C \) is

1This research was supported by the Research Administration Division of King Mongkut’s Institute of Technology Ladkrabang.
2Corresponding author.

Copyright © 2015 by the Mathematical Association of Thailand. All rights reserved.
said to be quasi-nonexpansive if $F(T) \neq \emptyset$ and
\[
\|Tx - p\| \leq \|x - p\|,
\]
for all $x \in C$ and $p \in F(T)$. Fixed point problems have been investigated in the following literature; see [1–3].

A mapping $A : C \to H$ is called α-inverse-strongly monotone if there exists a positive real number $\alpha > 0$ such that
\[
\langle Ax - Ay, x - y \rangle \geq \alpha \|Ax - Ay\|^2,
\]
for all $x, y \in C$.

Let $B : C \to H$. The variational inequality is to find a point $u \in C$ such that
\[
\langle Bu, v - u \rangle \geq 0,
\]
for all $v \in C$. The set of solutions of (1.1) is denoted by $VI(C, B)$.

The variational inequalities were initially studied and introduced by Stampacchia [4, 5]. This problem is widely used in economics, social sciences and other fields, see for example [6–8].

Let $D_1, D_2 : C \to H$ be two mappings. In 2008, Ceng et al. [9] introduced a problem for finding $(x^\ast, z^\ast) \in C \times C$ such that
\[
\begin{cases}
\langle \lambda_1 D_1 z^\ast + x^\ast - z^\ast, x - x^\ast \rangle \geq 0, \forall x \in C, \\
\langle \lambda_2 D_2 x^\ast + z^\ast - x^\ast, x - z^\ast \rangle \geq 0, \forall x \in C,
\end{cases}
\]
which is called a system of variational inequalities where $\lambda_1, \lambda_2 > 0$.

In 2013, Kangtunyakarn [10] modified (1.2) for finding $(x^\ast, z^\ast) \in C \times C$ such that
\[
\begin{cases}
\langle x^\ast - (I - \lambda_1 D_1)(ax^\ast + (1 - a)z^\ast), x - x^\ast \rangle \geq 0, \forall x \in C, \\
\langle z^\ast - (I - \lambda_2 D_2)x^\ast, x - z^\ast \rangle \geq 0, \forall x \in C,
\end{cases}
\]
which is called a modification of system of variational inequalities, for every $\lambda_1, \lambda_2 > 0$ and $a \in [0,1]$. If $a = 0$, (1.3) reduces to (1.2). He introduced the relation between solutions of (1.3) and fixed point of the mapping G as follows:

Lemma 1.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let $D_1, D_2 : C \to H$ be mappings. For every $\lambda_1, \lambda_2 > 0$ and $a \in [0,1]$, the following statements are equivalent:

1. $(x^\ast, z^\ast) \in C \times C$ is a solution of problem (1.3),
2. x^\ast is a fixed point of the mapping $G : C \to C$, i.e., $x^\ast \in F(G)$, defined by

\[
G(x) = PC(I - \lambda_1 D_1)(ax + (1 - a)PC(I - \lambda_2 D_2)x),
\]

where $z^\ast = PC(I - \lambda_2 D_2)x^\ast$.
Moreover, he introduced a new iterative algorithm \(\{x_n\} \) for finding a common element of the set of fixed points of a finite family of \(\kappa_i \)-strictly pseudo-contractive mappings and the set of solutions of problem (1.3) in Hilbert space. The sequence \(\{x_n\} \) is generated by

\[
\begin{align*}
 y_n &= P_C(I - \lambda_2 D_2)x_n, \\
 x_{n+1} &= \alpha_n u + \beta_n x_n + \gamma_n SPC (ax_n + (1 - a)y_n - \lambda_1 D_1 (ax_n + (1 - a)y_n)), \forall n \geq 1,
\end{align*}
\]

where \(D_1, D_2 : C \to H \) are \(d_1, d_2 \)-inverse strongly monotone mappings, respectively, and \(S : C \to C \) is S-mapping generated by a finite family of strictly pseudo-contractive mapping and finite real numbers. Under suitable conditions of the parameters \(\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}, \lambda_1, \lambda_2, a, \) he proved a strong convergence theorem of iterative scheme \(\{x_n\} \).

In 2012, Tian and Jin [11] proved the following strong convergence theorem of iterative scheme \(\{x_n\} \) generated by (1.4).

Theorem 1.2. Starting with an arbitrary chosen \(x_1 \in H \), let the sequence \(\{x_n\} \) be generated by

\[
x_{n+1} = \alpha_n \gamma f(x_n) + (1 - \alpha_n A)T_\omega x_n, \tag{1.4}
\]

where the sequence \(\{\alpha_n\} \subset (0,1) \) satisfies \(\lim_{n \to \infty} \alpha_n = 0 \), and \(\sum_{n=1}^{\infty} \alpha_n = \infty \). Also \(\omega \in (0, \frac{1}{2}), T_\omega := (1 - \omega)I + \omega T \) with two conditions on \(T \):

1. \(\|Tx - q\| \leq \|x - q\| \) for any \(x \in H \), and \(q \in F(T) \); this means that \(T \) is a quasi-nonexpansive mapping;
2. \(T \) is demiclosed on \(H \); that is: if \(\{y_k\} \subset H, y_k \rightharpoonup z, \) and \((I - T)y_k \to 0, \) then \(z \in F(T) \).

Then \(\{x_n\} \) converges strongly to the \(x^* \in F(T) \) which is the unique solution of the VIP:

\[
\langle (\gamma f - A)x^*, x - x^* \rangle \leq 0, \forall x \in F(T).
\]

Many authors proved strong convergence theorem involving a quasi-nonexpansive mapping \(T \) by assuming the following conditions:

1. \(T_\omega := (1 - \omega)I + \omega T \),
2. \(T \) is demiclosed on \(H \).

see for example [12] and [13].

Motivated by [10], we introduced the new method for finding a common element of the set of fixed points of a quasi-nonexpansive mapping and the set of solutions of a modified system of variational inequalities without the conditions (1) and (2) in a framework of Hilbert space. Using our main result, we obtain strong convergence theorems involving a finite family of nonspreading mapping and another corollary.
2 Preliminaries

Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\| \cdot \|$. Throughout this paper, we denote weak and strong convergence by notations $\overset{w}{\rightharpoonup}$ and $\overset{w}{\rightarrow}$, respectively. For every $x \in H$, there exists a unique nearest point $P_C x$ in C such that $\|x - P_C x\| \leq \|x - y\|$ for all $y \in C$. P_C is called the metric projection of H onto C.

Remark 2.1. It is well-known that metric projection P_C has the following properties:

1. P_C is firmly nonexpansive, i.e.,
 \[\|P_C x - P_C y\|^2 \leq \langle P_C x - P_C y, x - y \rangle, \forall x, y \in H. \]

2. For each $x \in H$,
 \[z = P_C (x) \iff \langle x - z, z - y \rangle \geq 0, \forall y \in C. \]

Recall that H satisfies Opial’s condition [14], i.e., for any sequence $\{x_n\}$ with $x_n \overset{w}{\rightharpoonup} x$, the inequality
\[\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\| \]
holds for every $y \in H$ with $y \neq x$.

Lemma 2.2. Let H be a real Hilbert space. Then there holds the following well-known results:

1. $\|x \pm y\|^2 = \|x\|^2 \pm 2 \langle x, y \rangle + \|y\|^2$,
2. $\|x + y\|^2 \leq \|x\|^2 + 2 \langle y, x + y \rangle$,

for all $x, y \in H$.

Lemma 2.3 ([15]). Let $(E, \langle \cdot, \cdot \rangle)$ be an inner product space. Then, for all $x, y, z \in E$ and $\alpha, \beta, \gamma \in [0, 1]$ with $\alpha + \beta + \gamma = 1$, we have
\[
\|\alpha x + \beta y + \gamma z\|^2 = \alpha \|x\|^2 + \beta \|y\|^2 + \gamma \|z\|^2 - \alpha \beta \|x - y\|^2 - \alpha \gamma \|x - z\|^2 - \beta \gamma \|y - z\|^2.
\]

Lemma 2.4 ([16]). Let E be a uniformly convex Banach space, let C be a nonempty closed convex subset of E and let $S : C \to C$ be a nonexpansive mapping. Then $I - S$ is demi-closed at zero.

Lemma 2.5 ([17]). Let $\{s_n\}$ be a sequence of nonnegative real numbers satisfying
\[s_{n+1} \leq (1 - \alpha_n) s_n + \delta_n, \forall n \geq 1 \]
where $\{\alpha_n\}$ is a sequence in $(0, 1)$ and $\{\delta_n\}$ is a sequence such that
(1) \(\sum_{n=1}^{\infty} \alpha_n = \infty \),

(2) \(\limsup_{n \to \infty} \frac{\delta_n}{\alpha_n} \leq 0 \) or \(\sum_{n=1}^{\infty} |\delta_n| < \infty \).

Then, \(\lim_{n \to \infty} s_n = 0 \).

Lemma 2.6 ([10]). Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \) and let \(D_1, D_2 : C \to H \) be \(d_1, d_2 \)-inverse strongly monotone mappings, respectively, which \(\text{VI} (C, D_1) \cap \text{VI} (C, D_2) \neq \emptyset \). Define a mapping \(G : C \to C \) by

\[
G (x) = P_C (I - \lambda_1 D_1) (ax + (1-a) P_C (I - \lambda_2 D_2) x),
\]

for every \(\lambda_1 \in (0, 2d_1), \lambda_2 \in (0, 2d_2) \) and \(a \in (0, 1) \). Then \(F (G) = \text{VI} (C, D_1) \cap \text{VI} (C, D_2) \).

Lemma 2.7 ([15]). Let \(H \) be a real Hilbert space, let \(C \) be a nonempty closed convex subset of \(H \) and let \(A \) be a mapping of \(C \) into \(H \). Let \(u \in C \). Then for \(\lambda > 0 \),

\[
\| u - \| P_C (I - \lambda A) u \| \leq u \in \text{VI} (C, A),
\]

where \(P_C \) is the metric projection of \(H \) onto \(C \).

The next result is very important for our main result.

Lemma 2.8. Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \) and let \(T : C \to C \) be a quasi-nonexpansive mapping. Then \(\text{VI} (C, I - T) = F (T) \).

Proof. It is easy to see that \(F (T) \subseteq \text{VI} (C, I - T) \).

Let \(u \in \text{VI} (C, I - T) \), then we have

\[
\langle v - u, (I - T) u \rangle \geq 0, \ \forall v \in C.
\] (2.1)

Let \(v^* \in F (T) \), then we have

\[
\| Tu - v^* \|^2 \leq \| u - v^* \|^2.
\] (2.2)

On the other hand

\[
\| Tu - v^* \|^2 = \| (u - v^*) - (I - T) u \|^2
= \| u - v^* \|^2 - 2 (u - v^*, (I - T) u) + \| (I - T) u \|^2.
\] (2.3)

From (2.2) and (2.3), we have

\[
\| u - v^* \|^2 - 2 (u - v^*, (I - T) u) + \| (I - T) u \|^2 \leq \| u - v^* \|^2.
\]

From (2.1), we have

\[
\| (I - T) u \|^2 \leq 2 (u - v^*, (I - T) u).
\]

It follows that \(u \in F (T) \). Hence \(\text{VI} (C, I - T) \subseteq F (T) \). \(\Box \)

Remark 2.9. From Lemma 2.7 and 2.8 we have

\[
F (T) = \text{VI} (C, I - T) = F (P_C (I - \lambda (I - T))),
\]

for all \(\lambda > 0 \).
3 Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and let $T : C \to C$ be a quasi-nonexpansive mapping. Let $A, B : C \to H$ be α, β-inverse strongly monotone mappings, respectively. Define the mapping $G : C \to C$ by $Gx = P_C(I - \lambda_1 A)(ax + (1 - a)P_C(I - \lambda_2 B)x)$ for all $x \in C$. Assume $F = VI(C, A) \cap VI(C, B) \cap F(T) \neq \emptyset$. Suppose that $x_1, u \in C$ and let $\{x_n\}$ be a sequence generated by

$$x_{n+1} = \alpha_n u + \beta_n P_C(I - \lambda_n(I - T))x_n + \gamma_n Gx_n, \ \forall n \geq 1,$$

where $\lambda_1 \in (0, 2\alpha), \lambda_2 \in (0, 2\beta)$ and $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are sequences in $[0, 1]$. Suppose the following conditions hold:

(i) $\alpha_n + \beta_n + \gamma_n = 1$,

(ii) $\lim_{n \to \infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$,

(iii) $0 < a \leq \beta_n \leq c < 1$ for all $n \geq 1$,

(iv) $\sum_{n=1}^{\infty} \lambda_n < \infty$ and $0 < \lambda_n < 1$,

(v) $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty, \sum_{n=1}^{\infty} |\beta_{n+1} - \beta_n| < \infty, \sum_{n=1}^{\infty} |\gamma_{n+1} - \gamma_n| < \infty$.

Then $\{x_n\}$ converges strongly to $z_0 = P_F u$.

Proof. We divide the proof into five steps.

Step 1. We show that $\{x_n\}$ is bounded.

Let $x, y \in C$. Since A is α-inverse strongly monotone and $\lambda_1 \in (0, 2\alpha)$, we have

$$\| (I - \lambda_1 A)x - (I - \lambda_1 A)y \|^2 = \| x - y \|^2 - 2\lambda_1 \langle x - y, Ax - Ay \rangle + \lambda_1^2 \| Ax - Ay \|^2$$
$$\leq \| x - y \|^2 - 2\alpha \lambda_1 \| Ax - Ay \|^2 + \lambda_1^2 \| Ax - Ay \|^2$$
$$= \| x - y \|^2 + \lambda_1 (1 - 2\alpha) \| Ax - Ay \|^2$$
$$\leq \| x - y \|^2.$$

Therefore $(I - \lambda_1 A)$ is a nonexpansive mapping. Similarly, $(I - \lambda_2 B)$ is a nonexpansive mapping. Hence $P_C(I - \lambda_1 A)$ and $P_C(I - \lambda_2 B)$ are nonexpansive mappings. From definition of the mapping G, we have G is a nonexpansive mapping.

Let $x^* \in F$. From Remark 2.9, we have

$$x^* \in F(P_C(I - \lambda_n(I - T))).$$

By Lemma 2.6 we have

$$x^* = G(x^*) = P_C(I - \lambda_1 A)(ax^* + (1 - a)P_C(I - \lambda_2 B)x^*).$$
Approximation Method for Fixed Points of Nonlinear Mapping ... 659

Observe that

\[
\|T x_n - T x^*\|^2 = \|(x_n - x^*) - (I - T)x_n\|^2 = \|x_n - x^*\|^2 - 2\langle x_n - x^*, (I - T)x_n \rangle + \|(I - T)x_n\|^2.
\]

Since \(T\) is a quasi-nonexpansive mapping, we have

\[
\|(I - T)x_n\|^2 \leq 2\langle x_n - x^*, (I - T)x_n \rangle. \quad (3.2)
\]

From the nonexpansiveness of \(P_C\) and (3.2), we have

\[
\|P_C(I - \lambda_n(I - T)) x_n - x^*\|^2 = \|P_C(I - \lambda_n(I - T)) x_n - P_C(I - \lambda_n(I - T)) x^*\|^2 \\
\leq \|(I - \lambda_n(I - T)) x_n - (I - \lambda_n(I - T)) x^*\|^2 \\
= \||(x_n - x^*) - \lambda_n((I - T)x_n - (I - T)x^*))\|^2 \\
= \|x_n - x^*\|^2 - 2\lambda_n\langle x_n - x^*, (I - T)x_n \rangle \\
+ \lambda_n^2 \|(I - T)x_n\|^2 \\
\leq \|x_n - x^*\|^2 - \lambda_n\|(I - T)x_n\|^2 + \lambda_n^2 \|(I - T)x_n\|^2 \\
\leq \|x_n - x^*\|^2. \quad (3.3)
\]

Put \(M_n = ax_n + (1 - a)P_C(I - \lambda_2 B)x_n\) and \(W_n = P_C(I - \lambda_1 A)M_n\). From (3.1), we have

\[
x_{n+1} = \alpha_n u + \beta_n P_C(I - \lambda_n(I - T))x_n + \gamma_n W_n.
\]

From the definition of \(x_n\), (3.3) and nonexpansiveness of \(G\), we have

\[
\|x_{n+1} - x^*\| = \|\alpha_n (u - x^*) + \beta_n (P_C(I - \lambda_n(I - T)) x_n - x^*) + \gamma_n (W_n - x^*)\| \\
\leq \alpha_n \|u - x^*\| + \beta_n \|P_C(I - \lambda_n(I - T)) x_n - x^*\| + \gamma_n \|W_n - x^*\| \\
\leq \alpha_n \|u - x^*\| + \beta_n \|x_n - x^*\| \\
+ \gamma_n \|P_C(I - \lambda_1 A)(ax_n + (1 - a)P_C(I - \lambda_2 B)x_n) - P_C(I - \lambda_1 A)(ax^* + (1 - a)P_C(I - \lambda_2 B)x^*)\| \\
= \alpha_n \|u - x^*\| + \beta_n \|x_n - x^*\| + \gamma_n \|G(x_n) - G(x^*)\| \\
\leq \alpha_n \|u - x^*\| + \beta_n \|x_n - x^*\| + \gamma_n \|x_n - x^*\| \\
= \alpha_n \|u - x^*\| + (1 - \alpha_n) \|x_n - x^*\| \\
\leq \max\{\|u - x^*\|, \|x_n - x^*\|\}.
\]

By induction, we can conclude that

\[
\|x_n - x^*\| \leq \max\{\|u - x^*\|, \|x_1 - x^*\|\},
\]

for all \(n \geq 1\). This implies that the sequence \(\{x_n\}\) is bounded and so is \(\{(I - T)x_n\}\).
Step 2. We show that \(\lim_{n \to \infty} \| x_{n+1} - x_n \| = 0. \)

From the definition of \(x_n \) and nonexpansiveness of \(G \), we have

\[
\| x_{n+1} - x_n \| = \|(\alpha_n - \alpha_{n-1})u + (\beta_n - \beta_{n-1})P_C(I - \lambda_{n-1}(I - T))x_{n-1}
+ \beta_n(P_C(I - \lambda_n(I - T))x_n - P_C(I - \lambda_{n-1}(I - T))x_{n-1})
+ \gamma_n(W_n - W_{n-1}) + (\gamma_n - \gamma_{n-1})W_{n-1}\|
\leq |\alpha_n - \alpha_{n-1}| \| u \| + |\beta_n - \beta_{n-1}| \| P_C(I - \lambda_{n-1}(I - T))x_{n-1}\|
+ |\beta_n| \| P_C(I - \lambda_n(I - T))x_n - P_C(I - \lambda_{n-1}(I - T))x_{n-1}\|
+ |\gamma_n| \| W_n - W_{n-1}\| + |\gamma_n - \gamma_{n-1}| \| W_{n-1}\|
\leq (1 - \alpha_n) \| x_n - x_{n-1}\| + \lambda_n \| (I - T)x_n - (I - T)x_{n-1}\|
+ |\alpha_n - \alpha_{n-1}| \| u \| + |\beta_n - \beta_{n-1}| \| P_C(I - \lambda_{n-1}(I - T))x_{n-1}\|
+ |\gamma_n - \gamma_{n-1}| \| W_{n-1}\| + |\lambda_n - \lambda_{n-1}| \| (I - T)x_{n-1}\|
\leq (1 - \alpha_n) \| x_n - x_{n-1}\| + \lambda_n M + |\alpha_n - \alpha_{n-1}| M + |\beta_n - \beta_{n-1}| M
+ |\gamma_n - \gamma_{n-1}| M + |\lambda_n - \lambda_{n-1}| M,
\]

where \(M := \max_{n \in \mathbb{N}} \{ \|(I - T)x_{n+1} - (I - T)x_n\|, \|u\|, \|P_C(I - \lambda_n(I - T))x_n\|, \|W_n\|, \|(I - T)x_n\| \}. \)

From the condition (ii), (iv), (v) and Lemma 2.5, we have

\[
\lim_{n \to \infty} \| x_{n+1} - x_n \| = 0. \tag{3.4}
\]

Step 3. We show that \(\lim_{n \to \infty} \| P_C(I - \lambda_n(I - T))x_n - x_n \| = 0. \)

Since \(x^* = P_C(I - A_1A) (ax^* + (1 - a)P_C(I - \lambda_2B)x^*) \) and \(M^* = ax^* + (1 - a)P_C(I - \lambda_2B)x^* \), we have \(x^* = P_C(I - \lambda_1A)M^*. \)
Since \(x^* \in VI(C, B) \), we obtain

\[
M^* - x^* = (1 - a) \left(P_C(I - \lambda_2 B)x^* - x^* \right) \\
= (1 - a) \left(P_C(I - \lambda_2 B)x^* - P_C(I - \lambda_2 B)x^* \right) \\
= 0.
\]

(3.5)

From the definition of \(M_n \) and \(M^* \), we have

\[
\|M_n - M^*\| = \|a(x_n - x^*) + (1 - a) \left(P_C(I - \lambda_2 B)x_n - P_C(I - \lambda_2 B)x^* \right)\| \\
\leq a\|x_n - x^*\| + (1 - a) \|P_C(I - \lambda_2 B)x_n - P_C(I - \lambda_2 B)x^*\| \\
\leq a\|x_n - x^*\| + (1 - a)\|x_n - x^*\| \\
= \|x_n - x^*\|.
\]

(3.6)

From the definition of \(W_n \), we have

\[
\|W_n - x^*\|^2 = \|P_C(I - \lambda_1 A)M_n - P_C(I - \lambda_1 A)M^*\|^2 \\
\leq (\|I - \lambda_1 A\| M_n - (I - \lambda_1 A)M^*, W_n - x^*) \\
= \frac{1}{2} \left(\|I - \lambda_1 A\| M_n - (I - \lambda_1 A)M^*\|^2 + \|W_n - x^*\|^2 \\
- \|I - \lambda_1 A\| M_n - (I - \lambda_1 A)M^* - W_n + x^*\|^2 \right) \\
\leq \frac{1}{2} \left(\|M_n - M^*\|^2 + \|W_n - x^*\|^2 \\
- \|(M_n - W_n) - \lambda_1 (AM_n - AM^*)\|^2 \right),
\]

which implies that

\[
\|W_n - x^*\|^2 \leq \|M_n - M^*\|^2 - \|(M_n - W_n) - \lambda_1 (AM_n - AM^*)\|^2 \\
= \|M_n - M^*\|^2 - \|M_n - W_n\|^2 + 2\lambda_1 \langle M_n - W_n, AM_n - AM^* \rangle \\
- \lambda_1^2 \|AM_n - AM^*\|^2.
\]

(3.7)

From the definition of \(W_n \), we have

\[
\|W_n - x^*\|^2 \\
= \|P_C(I - \lambda_1 A)M_n - P_C(I - \lambda_1 A)M^*\|^2 \\
\leq (\|I - \lambda_1 A\| M_n - (I - \lambda_1 A)M^*, W_n - x^*) \\
= \|M_n - M^*\|^2 - \lambda_1 (AM_n - AM^*)\|^2 \\
= \|M_n - M^*\|^2 - 2\lambda_1 \langle M_n - M^*, AM_n - AM^* \rangle + \lambda_1^2 \|AM_n - AM^*\|^2 \\
\leq \|M_n - M^*\|^2 - 2\lambda_1 \alpha \|AM_n - AM^*\|^2 + \lambda_1^2 \|AM_n - AM^*\|^2 \\
= \|M_n - M^*\|^2 - \lambda_1 (2\alpha - \lambda_1) \|AM_n - AM^*\|^2.
\]

(3.8)
From the definition of x_n, (3.3), (3.6) and (3.8), we have

$$
\|x_{n+1} - x^*\| \leq \alpha_n \|u - x^*\|^2 + \beta_n \|PC(I - \lambda_n(I - T))x_n - x^*\|^2
+ \gamma_n \|W_n - x^*\|^2
\leq \alpha_n \|u - x^*\|^2 + \beta_n \|x_n - x^*\|^2
+ \gamma_n \left(\|M_n - M^*\|^2 - \lambda_1(2\alpha - \lambda_1) \|AM_n - AM^*\|^2\right)
\leq \alpha_n \|u - x^*\|^2 + \beta_n \|x_n - x^*\|^2 + \gamma_n \|x_n - x^*\|^2
- \gamma_n \lambda_1(2\alpha - \lambda_1) \|AM_n - AM^*\|^2
= \alpha_n \|u - x^*\|^2 + (1 - \alpha_n) \|x_n - x^*\|^2
- \gamma_n \lambda_1(2\alpha - \lambda_1) \|AM_n - AM^*\|^2.
$$

It implies that

$$
\gamma_n \lambda_1(2\alpha - \lambda_1) \|AM_n - AM^*\|^2
\leq \alpha_n \|u - x^*\|^2 + \|x_n - x^*\|^2 - \|x_{n+1} - x^*\|^2
\leq \alpha_n \|u - x^*\|^2 + \|x_n - x_{n+1}\| \left(\|x_n - x^*\| + \|x_{n+1} - x^*\|\right).
$$

From the condition (ii) and (3.4), we derive

$$
\lim_{n \to \infty} \|AM_n - AM^*\| = 0.
$$

(3.10)

From the definition of x_n, (3.3), (3.6) and (3.7), we have

$$
\|x_{n+1} - x^*\|^2 \leq \alpha_n \|u - x^*\|^2 + \beta_n \|PC(I - \lambda_n(I - T))x_n - x^*\|^2 + \gamma_n \|W_n - x^*\|^2
\leq \alpha_n \|u - x^*\|^2 + \beta_n \|x_n - x^*\|^2
+ \gamma_n \left(\|M_n - M^*\|^2 - \|M_n - W_n\|^2 + 2\lambda_1 \|M_n - W_n, AM_n - AM^*\|
- \lambda_1^2 \|AM_n - AM^*\|^2\right)
\leq \alpha_n \|u - x^*\|^2 + \beta_n \|x_n - x^*\|^2 + \gamma_n \|x_n - x^*\|^2 - \gamma_n \|M_n - W_n\|^2
+ 2\lambda_1 \|M_n - W_n\| \|AM_n - AM^*\|
= \alpha_n \|u - x^*\|^2 + (1 - \alpha_n) \|x_n - x^*\|^2 - \gamma_n \|M_n - W_n\|^2
+ 2\lambda_1 \|M_n - W_n\| \|AM_n - AM^*\|.
$$

It follows that

$$
\gamma_n \|M_n - W_n\|^2 \leq \alpha_n \|u - x^*\|^2 + \|x_n - x^*\|^2 - \|x_{n+1} - x^*\|^2
+ 2\lambda_1 \|M_n - W_n\| \|AM_n - AM^*\|
\leq \alpha_n \|u - x^*\|^2 + \|x_n - x_{n+1}\| \left(\|x_n - x^*\| + \|x_{n+1} - x^*\|\right)
+ 2\lambda_1 \|M_n - W_n\| \|AM_n - AM^*\|.
$$

(3.11)
From the condition \((ii) \), \(\text{(3.8)} \) and \(\text{(3.10)} \), we derive

\[
\lim_{n \to \infty} \| M_n - W_n \| = 0. \tag{3.12}
\]

From the property of \(P_C \), we have

\[
\| P_C(I - \lambda_2 B)x_n - x^* \|^2 = \| P_C(I - \lambda_2 B)x_n - P_C(I - \lambda_2 B)x^* \|^2 \\
\leq \langle (I - \lambda_2 B)x_n - (I - \lambda_2 B)x^* , P_C(I - \lambda_2 B)x_n - x^* \rangle \\
= \frac{1}{2} \left(\| (I - \lambda_2 B)x_n - x^* \|^2 \\
+ \| P_C(I - \lambda_2 B)x_n - x^* \|^2 \\
- \| (I - \lambda_2 B)x_n - (I - \lambda_2 B)x^* - P_C(I - \lambda_2 B)x_n + x^* \|^2 \right) \\
\leq \frac{1}{2} \left(\| x_n - x^* \|^2 + \| P_C(I - \lambda_2 B)x_n - x^* \|^2 \\
- \| (x_n - P_C(I - \lambda_2 B)x_n) - \lambda_2 (Bx_n - Bx^*) \|^2 \right). \tag{3.13}
\]

This implies that

\[
\| P_C(I - \lambda_2 B)x_n - x^* \|^2 \leq \| x_n - x^* \|^2 \\
- \| (x_n - P_C(I - \lambda_2 B)x_n) - \lambda_2 (Bx_n - Bx^*) \|^2 \\
= \| x_n - x^* \|^2 - \| x_n - P_C(I - \lambda_2 B)x_n \|^2 \\
+ 2\lambda_2 \langle x_n - P_C(I - \lambda_2 B)x_n, Bx_n - Bx^* \rangle \\
- \lambda_2^2 \| Bx_n - Bx^* \|^2. \tag{3.14}
\]

By using the same method as \(\text{(3.9)} \), we have

\[
\| P_C(I - \lambda_2 B)x_n - x^* \|^2 \leq \| x_n - x^* \|^2 - \lambda_2 (2\beta - \lambda_2) \| Bx_n - Bx^* \|^2. \tag{3.15}
\]

Since \(x^* \in VI(C, A) \), we have

\[
\| W_n - x^* \|^2 = \| P_C(I - \lambda_1 A)M_n - P_C(I - \lambda_1 A)x^* \|^2 \\
\leq \| ax_n + (1 - a)P_C(I - \lambda_2 B)x_n - x^* \|^2 \\
= \| a(x_n - x^*) + (1 - a)(P_C(I - \lambda_2 B)x_n - x^*) \|^2 \\
\leq a \| x_n - x^* \|^2 + (1 - a) \| P_C(I - \lambda_2 B)x_n - x^* \|^2. \tag{3.16}
\]

From the definition of \(x_n \), \(\text{(3.3)} \), \(\text{(3.4)} \) and \(\text{(3.15)} \), we have

\[
\| x_{n+1} - x^* \|^2 \\
\leq \alpha_n \| u - x^* \|^2 + \beta_n \| P_C(I - \lambda_n(I - T))x_n - x^* \|^2 + \gamma_n \| W_n - x^* \|^2 \\
\leq \alpha_n \| u - x^* \|^2 + \beta_n \| P_C(I - \lambda_n(I - T))x_n - x^* \|^2 \\
+ \gamma_n \left(a \| x_n - x^* \|^2 + (1 - a) \| P_C(I - \lambda_2 B)x_n - x^* \|^2 \right).
\]
This implies that
\[
\lim_{n \to \infty} \|Bx_n - Bx^*\| = 0. \tag{3.17}
\]
From the condition \((ii)\) and \((3.4)\), we have
\[
\|x_{n+1} - x^*\|^2 \leq \alpha_n \|u - x^*\|^2 + \beta_n \|P_C(I - \lambda_n(I - T))x_n - x^*\|^2
+ \gamma_n \left(a \|x_n - x^*\|^2 + (1 - a) \|P_C(I - \lambda_2 B)x_n - x^*\|^2 \right)
\leq \alpha_n \|u - x^*\|^2 + \beta_n \|x_n - x^*\|^2 + \gamma_n \left(a \|x_n - x^*\|^2 + (1 - a) \|x_n - x^*\|^2
+ (1 - a)(\|x_n - x^*\|^2 - \|x_n - P_C(I - \lambda_2 B)x_n\|^2
+ 2\lambda_2 \|x_n - P_C(I - \lambda_2 B)x_n, Bx_n - Bx^*\) - \lambda_2^2 \|Bx_n - Bx^*\|^2) \right)
\leq \alpha_n \|u - x^*\|^2 + (1 - \alpha_n) \|x_n - x^*\|^2
- \gamma_n(1 - a) \|x_n - P_C(I - \lambda_2 B)x_n\|^2
+ 2\lambda_2 \gamma_n(1 - a) \|x_n - P_C(I - \lambda_2 B)x_n, Bx_n - Bx^*\)
\leq \alpha_n \|u - x^*\|^2 + \|x_n - x^*\|^2 - \gamma_n(1 - a) \|x_n - P_C(I - \lambda_2 B)x_n\|^2
+ 2\lambda_2 \gamma_n(1 - a) \|x_n - P_C(I - \lambda_2 B)x_n\| \|Bx_n - Bx^*\|. \tag{3.18}
\]
This implies that
\[
\gamma_n(1 - a) \|x_n - P_C(I - \lambda_2 B)x_n\|^2
\leq \alpha_n \|u - x^*\|^2 + \|x_n - x^*\|^2 - \|x_{n+1} - x^*\|^2
+ 2\lambda_2 \gamma_n(1 - a) \|x_n - P_C(I - \lambda_2 B)x_n\| \|Bx_n - Bx^*\|
\leq \alpha_n \|u - x^*\|^2 + \|x_n - x_{n+1}\| \|x_n - x^*\| + \|x_{n+1} - x^*\|)
+ 2\lambda_2 \gamma_n(1 - a) \|x_n - P_C(I - \lambda_2 B)x_n\| \|Bx_n - Bx^*\|. \tag{3.18}
\]
From the condition \((ii)\), \((3.4)\) and \((3.17)\), we derive
\[
\lim_{n \to \infty} \|x_n - P_C(I - \lambda_2 B)x_n\| = 0.
\]
Since
\[
\|M_n - x_n\| = \|ax_n + (1 - a)P_C(I - \lambda_2 B)x_n - x_n\|
= (1 - a)\|P_C(I - \lambda_2 B)x_n - x_n\|
\]
and \(\|P_C(I - \lambda_2 B)x_n - x_n\| \to 0\) as \(n \to \infty\), we have
\[
\lim_{n \to \infty} \|M_n - x_n\| = 0. \tag{3.19}
\]
From (3.12) and (3.19), we have
\[
\lim_{n \to \infty} \|W_n - x_n\| = 0. \tag{3.20}
\]
Since
\[
x_{n+1} - x_n = \alpha_n(u - x_n) + \beta_n(P_C(I - \lambda_n(I - T))x_n - x_n) + \gamma_n(W_n - x_n),
\]
it implies by the condition (ii), the condition (iii), (3.3) and (3.20) that
\[
\lim_{n \to \infty} \|P_C(I - \lambda_n(I - T))x_n - x_n\| = 0. \tag{3.21}
\]
Step 4. We show that \(\limsup_{n \to \infty} \langle u - z_0, x_n - z_0 \rangle \leq 0\), where \(z_0 = P_F u\). To show this inequality, take a subsequence \(\{x_{n_j}\}\) of \(\{x_n\}\) such that
\[
\limsup_{n \to \infty} \langle u - z_0, x_n - z_0 \rangle = \lim_{j \to \infty} \langle u - z_0, x_{n_j} - z_0 \rangle.
\]
Without loss of generality, we may assume that \(x_{n_j} \rightharpoonup \omega\) as \(j \to \infty\), where \(\omega \in C\). First, we show that \(\omega \in F(T)\). From Remark 2.9, we have \(F(T) = VI(C, I - T) = F(P_C(I - \lambda_n(I - T)))\). Assume that \(\omega \notin F(T)\), that \(\omega \neq P_C(I - \lambda_n(I - T))\omega\).
By \(x_{n_j} \rightharpoonup \omega\) as \(j \to \infty\), (3.21) and Opial’s property, we have
\[
\liminf_{j \to \infty} \|x_{n_j} - \omega\| < \liminf_{j \to \infty} \|x_{n_j} - P_C(I - \lambda_{n_j}(I - T))\omega\|
\leq \liminf_{j \to \infty} \|x_{n_j} - P_C(I - \lambda_{n_j}(I - T))x_{n_j}\|
+ \|P_C(I - \lambda_{n_j}(I - T))x_{n_j} - P_C(I - \lambda_{n_j}(I - T))\omega\|
\leq \liminf_{j \to \infty} \|x_{n_j} - P_C(I - \lambda_{n_j}(I - T))x_{n_j}\|
+ \|x_{n_j} - \omega\| + \lambda_{n_j} \|(I - T)x_{n_j} - (I - T)\omega\|
\leq \liminf_{j \to \infty} \|x_{n_j} - \omega\|.
\]
This is a contradiction, we have
\[
\omega \in F(T). \tag{3.22}
\]
Next, we show that \(\omega \in VI(C, A) \cap VI(C, B) \). From Lemma 2.4, we have \(VI(C, A) \cap VI(C, B) = F(G) \). From (3.22), we have \(W_n \to \omega \) as \(j \to \infty \).

\[
\|W_n - G(W_n)\| = \|P_C(I - \lambda_n A)(ax_n + (1 - a)P_C(I - \lambda_2 B)x_n) - G(W_n)\|
\]
\[
= \|G(x_n) - G(W_n)\|
\]
\[
\leq \|x_n - W_n\|.
\]

From (3.21), we have
\[
\lim_{n \to \infty} \|W_n - G(W_n)\| = 0.
\]

From \(W_{n_j} \to \omega \) as \(j \to \infty \) and Lemma 2.4, we have
\[
\omega \in F(G) = VI(C, A) \cap VI(C, B).
\]

From (3.22) and (3.23), we have \(\omega \in \mathcal{F} \). Since \(x_{n_j} \to \omega \) as \(j \to \infty \), we have
\[
\lim_{n \to \infty} \sup(u - z_0, x_n - z_0) = \lim_{j \to \infty} (u - z_0, x_{n_j} - z_0)
\]
\[
= \langle u - z_0, \omega - z_0 \rangle \leq 0.
\]

Step 5. Finally, we show that the sequence \(\{x_n\} \) converges strongly to \(z_0 = P_{\mathcal{F}}u \). From the definition of \(x_n \) and \(z_0 = P_{\mathcal{F}}u \), we have
\[
\|x_{n+1} - z_0\|^2 = \|\alpha_n(u - z_0) + \beta_n(P_C(I - \lambda_n(I - T))x_n - z_0) + \gamma_n(W_n - z_0)\|^2
\]
\[
\leq \|\beta_n(P_C(I - \lambda_n(I - T))x_n - z_0) + \gamma_n(W_n - z_0)\|^2
\]
\[
+ 2\alpha_n\langle u - z_0, x_{n+1} - z_0 \rangle
\]
\[
\leq \beta_n \|P_C(I - \lambda_n(I - T))x_n - z_0\|^2 + \gamma_n \|W_n - z_0\|^2
\]
\[
+ 2\alpha_n\langle u - z_0, x_{n+1} - z_0 \rangle
\]
\[
\leq \beta_n \|x_n - z_0\|^2 + \gamma_n \|x_n - z_0\|^2 + 2\alpha_n\langle u - z_0, x_{n+1} - z_0 \rangle
\]
\[
= (1 - \alpha_n) \|x_n - z_0\|^2 + 2\alpha_n\langle u - z_0, x_{n+1} - z_0 \rangle.
\]

From the condition (ii), (3.21) and Lemma 2.5, we can conclude that the sequence \(\{x_n\} \) converges strongly to \(z_0 = P_{\mathcal{F}}u \). This completes the proof. \(\square \)

From our main result, Lemma 1.1 and Lemma 2.6, we have the following corollary:

Corollary 3.2. Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \) and let \(T : C \to C \) be a quasi-nonexpansive mapping. Let \(A, B : C \to H \) be \(\alpha \), \(\beta \)-inverse strongly monotone mappings, respectively. Define the mapping \(G : C \to C \) by \(Gx = P_C(I - \lambda_1 A)(ax + (1 - a)P_C(I - \lambda_2 B)x) \) for all \(x \in C \). Assume \(\mathcal{F} = F(G) \cap F(T) \neq \emptyset \). Suppose that \(x_1, u \in C \) and let \(\{x_n\} \) be a sequence generated by
\[
x_{n+1} = \alpha_n u + \beta_n P_C(I - \lambda_n(I - T))x_n + r_n Gx_n, \quad \forall n \geq 1,
\]
where \(\lambda_1 \in (0, 2\alpha), \lambda_2 \in (0, 2\beta) \) and \(\{\alpha_n\}, \{\beta_n\}, \{r_n\} \) are sequences in \([0, 1] \). Suppose the following conditions holds:
(i) $\alpha_n + \beta_n + \gamma_n = 1$,
(ii) $\lim_{n \to \infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$,
(iii) $0 < a \leq \beta_n \leq c < 1$ for all $n \geq 1$,
(iv) $\sum_{n=1}^{\infty} \lambda_n < \infty$ and $0 < \lambda_n < 1$,
(v) $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty, \sum_{n=1}^{\infty} |\beta_{n+1} - \beta_n| < \infty, \sum_{n=1}^{\infty} |\lambda_{n+1} - \lambda_n| < \infty$.

Then $\{x_n\}$ converges strongly to $z_0 = P_{\text{F}(u)}$ and (z_0, y_0) is a solution of (1.3), where $y_0 = P_{C}(I - \lambda_2 B)z_0$.

4 Application

In this section, we prove strong convergence theorems involving the set of fixed points of nonspreading mapping.

A mapping $T : C \to C$ is called nonspreading if

$$2\|Tx - Ty\|^2 \leq \|Tx - y\|^2 + \|Ty - x\|^2, \forall x, y \in C.$$

The such mapping is defined by Kohsaka and Takahashi [19].

The following lemma is needed to prove in application.

Lemma 4.1 ([19]). Let H be a Hilbert space, let C be a nonempty closed convex subset of H, and let S be a nonspreading mapping of C into itself. Then $F(S)$ is closed and convex.

In 2009, Kangtunyakarn and Suantai [20] introduced the S-mapping generated by $T_1, T_2, ..., T_N$ and $\lambda_1, \lambda_2, ..., \lambda_N$ as following. Let C be a nonempty convex subset of a real Banach space. Let $\{T_i\}_{i=1}^{N}$ be a finite family of (nonexpansive) mappings of C into itself. For each $j = 1, 2, ..., N$, let $\alpha_j = (\alpha_{1j}, \alpha_{2j}, \alpha_{3j}) \in I \times I \times I$, where $I \in [0, 1]$ and $\alpha_{1j} + \alpha_{2j} + \alpha_{3j} = 1$. Define the mapping $S : C \to C$ as follows:

$U_0 = I,$
$U_1 = \alpha_{11}T_1U_0 + \alpha_{12}U_0 + \alpha_{13}I,$
$U_2 = \alpha_{11}^2T_2U_1 + \alpha_{12}^2U_1 + \alpha_{13}^2I,$
$U_3 = \alpha_{11}^3T_3U_2 + \alpha_{12}^3U_2 + \alpha_{13}^3I,$
\[\vdots \]
$U_{N-1} = \alpha_{11}^{N-1}T_{N-1}U_{N-2} + \alpha_{12}^{N-1}U_{N-2} + \alpha_{13}^{N-1}I,$
$S = U_N = \alpha_{11}^N T_N U_{N-1} + \alpha_{12}^N U_{N-1} + \alpha_{13}^N I.$
This mapping is called an \(S \)-mapping generated by \(T_1, T_2, ..., T_N \) and \(\alpha_1, \alpha_2, ..., \alpha_N \).

For every \(i = 1, 2, ..., N \). Put \(\alpha_i^3 = 0 \) in Definition 4.1, then the \(S \)-mapping is reduced to the \(K \)-mapping defined by Kangtunyakarn and Suantai \([21]\) as following. Let \(C \) be a nonempty convex subset of a real Banach space. Let \(\{ T_i \}_{i=1}^N \) be a finite family of mappings of \(C \) into itself, and let \(\lambda_1, \lambda_2, ..., \lambda_N \) be real numbers such that \(0 \leq \lambda_i \leq 1 \) for every \(i = 1, 2, ..., N \). We define a mapping \(K : C \rightarrow C \) as follows:

\[
U_0 = I, \\
U_1 = \lambda_1 T_1 + (1 - \lambda_1) I, \\
U_2 = \lambda_2 T_2 U_1 + (1 - \lambda_2) U_1, \\
U_3 = \lambda_3 T_3 U_2 + (1 - \lambda_3) U_2, \\
\vdots \\
U_{N-1} = \lambda_{N-1} T_{N-1} U_{N-2} + (1 - \lambda_{N-1}) U_{N-2}, \\
K = U_N = \lambda_N T_N U_{N-1} + (1 - \lambda_N) U_{N-1}.
\]

Such a mapping \(K \) is called the \(K \)-mapping generated by \(T_1, T_2, ..., T_N \) and \(\lambda_1, \lambda_2, ..., \lambda_N \).

Lemma 4.2 \((22)\). Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \). Let \(\{ T_i \}_{i=1}^N \) be a finite family of nonsnapping mappings of \(C \) into \(C \) with \(\bigcap_{i=1}^N F(T_i) \neq \emptyset \), and let \(\alpha_3 = (\alpha_1^3, \alpha_2^3, \alpha_3^3) \in I \times I \times I, j = 1, 2, ..., N \), where \(I = [0, 1] \), \(\alpha_1^j + \alpha_2^j + \alpha_3^j = 1 \), \(\alpha_1^j, \alpha_3^j \in (0, 1) \) for all \(j = 1, 2, ..., N - 1 \) and \(\alpha_1^N \in (0, 1], \alpha_3^N \in [0, 1], \alpha_2^j \in (0, 1) \) for all \(j = 1, 2, ..., N \). Let \(S \) be the mapping generated by \(T_1, T_2, ..., T_N \) and \(\alpha_1, \alpha_2, ..., \alpha_N \). Then \(F(S) = \bigcap_{i=1}^N F(T_i) \) and \(S \) is a quasinonexpanse mapping.

Lemma 4.3 \((23)\). Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \). Let \(\{ T_i \}_{i=1}^N \) be a finite family of nonsnapping mappings of \(C \) into itself with \(\bigcap_{i=1}^N F(T_i) \neq \emptyset \) and let \(\lambda_1, \lambda_2, ..., \lambda_N \) be real numbers such that \(0 < \lambda_i < 1 \) for every \(i = 1, 2, ..., N - 1 \) and \(0 < \lambda_N \leq 1 \). Let \(K \) be the \(K \)-mapping generated by \(T_1, T_2, ..., T_N \) and \(\lambda_1, \lambda_2, ..., \lambda_N \). Then \(F(K) = \bigcap_{i=1}^N F(T_i) \) and \(K \) is quasinonexpanse mapping.

By using these results, we obtain the following theorems

Theorem 4.4. Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \). Let \(\{ T_i \}_{i=1}^N \) be a finite family of nonsnapping mappings of \(C \) into \(C \) with \(\bigcap_{i=1}^N F(T_i) \neq \emptyset \), and let \(\alpha_j = (\alpha_1^j, \alpha_2^j, \alpha_3^j) \in I \times I \times I, j = 1, 2, ..., N \), where \(I = [0, 1] \), \(\alpha_1^j + \alpha_2^j + \alpha_3^j = 1 \), \(\alpha_1^j, \alpha_3^j \in (0, 1) \) for all \(j = 1, 2, ..., N - 1 \) and \(\alpha_1^N \in (0, 1] \), \(\alpha_2^j \in (0, 1] \) for all \(j = 1, 2, ..., N \). Then \(\bigcap_{i=1}^N F(T_i) \neq \emptyset \) and \(F(K) = \bigcap_{i=1}^N F(T_i) \) and \(K \) is quasinonexpanse mapping.
Then \(0 \), \(\sum_{j=1}^{N} \alpha_j^N \in [0, 1) \) for all \(j = 1, 2, \ldots, N \). Let \(S \) be the mapping generated by \(T_1, T_2, \ldots, T_N \) and \(\alpha_1, \alpha_2, \ldots, \alpha_N \). Let \(A, B : C \to H \) be \(\alpha, \beta \)-inverse strongly monotone mappings, respectively. Define the mapping \(G : C \to C \) by \(Gx = PC(I - \lambda_1 A)(ax + (1 - a)PC(I - \lambda_2 B)x) \) for all \(x \in C \). Assume \(F = VI(C, A) \cap VI(C, B) \cap \bigcap_{i=1}^{N} F(T_i) \neq \emptyset \). Suppose that \(x_1, u \in C \) and let \(\{x_n\} \) be sequence generated by
\[x_{n+1} = \alpha_n u + \beta_n PC(I - \lambda_n (I - S))x_n + \gamma_n Gx_n, \forall n \geq 1, \]
where \(\lambda_n \in (0, 2\alpha), \lambda_2 \in (0, 2\beta) \) and \(\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\} \) are sequences in \([0, 1)\). Suppose the following conditions hold:

(i) \(\alpha_n + \beta_n + \gamma_n = 1 \),

(ii) \(\lim_{n \to \infty} \alpha_n = 0 \) and \(\sum_{n=1}^{\infty} \alpha_n = \infty \),

(iii) \(0 < a \leq \beta_n \leq c < 1 \) for all \(n \geq 1 \),

(iv) \(\sum_{n=1}^{\infty} \lambda_n < \infty \) and \(0 < \lambda_n < 1 \),

(v) \(\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty, \sum_{n=1}^{\infty} |\beta_{n+1} - \beta_n| < \infty, \sum_{n=1}^{\infty} |\gamma_{n+1} - \gamma_n| < \infty \).

Then \(\{x_n\} \) converges strongly to \(z_0 = P_F u \).

Proof. By using Theorem 3.1 and Lemma 4.2 we obtain the conclusion. \qed

Theorem 4.5. Let \(C \) be a nonempty closed convex subset of a real Hilbert space \(H \). Let \(\{T_i\}_{i=1}^{N} \) be a finite family of nonspreading mappings of \(C \) into itself with \(\bigcap_{i=1}^{N} F(T_i) \neq \emptyset \) and let \(\lambda_1, \lambda_2, \ldots, \lambda_N \) be real numbers such that \(0 < \lambda_i < 1 \) for every \(i = 1, 2, \ldots, N-1 \) and \(0 < \lambda_N \leq 1 \). Let \(K \) be the \(K \)-mapping generated by \(T_1, T_2, \ldots, T_N \) and \(\lambda_1, \lambda_2, \ldots, \lambda_N \). Let \(A, B : C \to H \) be \(\alpha, \beta \)-inverse strongly monotone mappings, respectively. Define the mapping \(G : C \to C \) by \(Gx = PC(I - \lambda_1 A)(ax + (1 - a)PC(I - \lambda_2 B)x) \) for all \(x \in C \). Assume \(F = VI(C, A) \cap VI(C, B) \cap \bigcap_{i=1}^{N} F(T_i) \neq \emptyset \). Suppose that \(x_1, u \in C \) and let \(\{x_n\} \) be sequence generated by
\[x_{n+1} = \alpha_n u + \beta_n PC(I - \lambda_n (I - K))x_n + \gamma_n Gx_n, \forall n \geq 1, \]
where \(\lambda_1 \in (0, 2\alpha), \lambda_2 \in (0, 2\beta) \) and \(\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\} \) are sequences in \([0, 1)\). Suppose the following conditions hold:

(i) \(\alpha_n + \beta_n + \gamma_n = 1 \),

(ii) \(\lim_{n \to \infty} \alpha_n = 0 \) and \(\sum_{n=1}^{\infty} \alpha_n = \infty \),

(iii) \(0 < a \leq \beta_n \leq c < 1 \) for all \(n \geq 1 \),

(iv) \(\sum_{n=1}^{\infty} \lambda_n < \infty \) and \(0 < \lambda_n < 1 \),

(v) \(\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty, \sum_{n=1}^{\infty} |\beta_{n+1} - \beta_n| < \infty, \sum_{n=1}^{\infty} |\gamma_{n+1} - \gamma_n| < \infty \).

Then \(\{x_n\} \) converges strongly to \(z_0 = P_F u \).
Proof. By using Theorem 3.1 and Lemma 4.3, we obtain the conclusion.

The following result is direct proved from Theorem 4.4. Therefore, we omit the prove.

Corollary 4.6. Let C be a nonempty closed convex subset of a real Hilbert space. Let T be a nonspreading mappings of C into itself with $F(T) \neq \emptyset$. Let $A, B: C \to H$ be α, β-inverse strongly monotone mappings, respectively. Define the mapping $G: C \to C$ by

$$Gx = P_C(I - \lambda_1 A)(ax + (1 - a)P_C(I - \lambda_2 B)x)$$

for all $x \in C$. Assume $F = VI(C, A) \cap VI(C, B) \cap F(T) \neq \emptyset$. Suppose that $x_1, u \in C$ and let $\{x_n\}$ be sequence generated by

$$x_{n+1} = \alpha_n u + \beta_n P_C(I - \lambda_n(I - T))x_n + \gamma_n Gx_n, \forall n \geq 1,$$

where $\lambda_1 \in (0, 2\alpha)$, $\lambda_2 \in (0, 2\beta)$ and $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are sequences in $[0, 1]$. Suppose the following conditions hold:

(i) $\alpha_n + \beta_n + \gamma_n = 1$,

(ii) $\lim_{n \to \infty} \alpha_n = 0$ and $\sum_{n=1}^{\infty} \alpha_n = \infty$,

(iii) $0 < a \leq \beta_n \leq c < 1$ for all $n \geq 1$,

(iv) $\sum_{n=1}^{\infty} \lambda_n < \infty$ and $0 < \lambda_n < 1$,

(v) $\sum_{n=1}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$, $\sum_{n=1}^{\infty} |\beta_{n+1} - \beta_n| < \infty$, $\sum_{n=1}^{\infty} |\lambda_{n+1} - \lambda_n| < \infty$.

Then $\{x_n\}$ converges strongly to $z_0 = P_Fu$.

References

(Received 6 March 2014)
(Accepted 7 May 2014)