Regularity of Semihypergroups of Infinite Matrices

S. Chaopraknoi and N. Triphop

Abstract

A semigroup S is a regular semigroup if for every $x \in S, x=x y x$ for some $y \in S$, and a semihypergroup (H, \circ) is a regular semihypergroup if for every $x \in H, x \in x \circ y \circ x$ for some $y \in H$. If S is a semigroup and P is a nonempty subset of S, we let (S, P) denote the semihypergroup (S, \circ) where $x \circ y=x P y$ for all $x, y \in S$. Let $\operatorname{BM}(F)$ be the multiplicative semigroup of all bounded $\mathbb{N} \times \mathbb{N}$ matrices over a field F where \mathbb{N} is the set of natural numbers. It is known that $\mathbf{B M}(F)$ is a regular semigroup. Our purpose is to provide necessary and sufficient conditions for a nonempty subset \mathbf{P} of $\mathbf{B M}(F)$ so that $(\mathbf{B M}(F), \mathbf{P})$ is a regular semihypergroup.

Keywords : Regular semihypergroup, infinite matrix
2000 Mathematics Subject Classification : 20N20, 20M17, 20M99

1 Introduction

A semigroup S is called a regular semigroup if for every $x \in S, x=x y x$ for some $y \in S$.

By a hyperoperation on a nonempty set H is a function \circ from $H \times H$ into $P(H) \backslash\{\emptyset\}$ where $P(H)$ is the power set of H, and (H, \circ) is called a hypergroupoid. For $A, B \subseteq H$, let $A \circ B=\bigcup_{\substack{a \in A \\ b \in B}} a \circ b$. A hypergroupoid (H, \circ) is called a semihypergroup if $x \circ(y \circ z)=(x \circ y) \circ z$ for all $x, y, z \in H$. A hypergroup is a semihypergroup (H, \circ) satisfying the condition $H \circ x=x \circ H=H$ for all $x \in H$. We call a semihypergroup (H, \circ) a regular semihypergroup if for every $x \in H, x \in x \circ y \circ x$ for some $y \in H$. Hence every regular semigroup is a regular semihypergroup. Notice that if (H, \circ) is a hypergroup, then for every $x \in H, x \circ H \circ x=H$. This implies that every hypergroup is a regular semihypergroup.

Let S be a semigroup, P a nonempty subset of S and \circ the hyperoperation on S defined by $x \circ y=x P y$ for all $x, y \in S$. Then (S, \circ) is a semihypergroup ([2], page 11) and (S, \circ) will be denoted by (S, P). We note here that if S is a group, then (S, P) is a hypergroup, so it is a regular semihypergroup.

Let \mathbb{N} be the set of natural numbers (positive integers) and F a field. For
$n \in \mathbb{N}$, let $\mathbf{M}_{n}(F)$ be the multiplicative semigroup of all $n \times n$ matrices over F. It is well-known that $\mathbf{M}_{n}(F)$ is a regular semigroup ([3], page 114) with identity I_{n} where I_{n} is the identity $n \times n$ matrix over F.

By an $\mathbb{N} \times \mathbb{N}$ matrix over F we mean an infinite matrix over F of the form

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & \ldots \\
a_{21} & a_{22} & a_{23} & \ldots \\
a_{31} & a_{32} & a_{33} & \ldots \\
& \vdots & &
\end{array}\right]
$$

and let $\mathbf{M}(F)$ be the set of all $\mathbb{N} \times \mathbb{N}$ matrices over F. We give a remark that associativity $(A B) C=A(B C)$ can fail for $A, B, C \in \mathbf{M}(F)$ even when all products concerned make sense. The following example was given in [1]. Define $A, B, C \in$ $\mathbf{M}(F)$ by

$$
\begin{gathered}
A=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & \ldots \\
0 & 1 & 1 & 1 & \ldots \\
0 & 0 & 1 & 1 & \ldots \\
& & \vdots & &
\end{array}\right], \quad B=\left[\begin{array}{rrrrrr}
1 & -1 & 0 & 0 & 0 & \ldots \\
0 & 1 & -1 & 0 & 0 & \ldots \\
0 & 0 & 1 & -1 & 0 & \ldots \\
& & \vdots
\end{array}\right] \\
C=\left[\begin{array}{rrrrrr}
0 & 0 & 0 & 0 & \ldots \\
-1 & 0 & 0 & 0 & \ldots \\
-1 & -1 & 0 & 0 & \ldots \\
-1 & -1 & -1 & 0 & \ldots \\
& & \vdots &
\end{array}\right] .
\end{gathered}
$$

Then $A B=B C=I$, the identity $\mathbb{N} \times \mathbb{N}$ matrix over F. Thus $(A B) C=C \neq A=$ $A(B C)$.

For a matrix A in $\mathbf{M}_{n}(F)$ or $\mathbf{M}(F)$, the entry of A in the $i \underline{\underline{t h}}$ row and the $j \underline{\underline{t h}}$ column will be denoted by $A_{i j}$. A matrix $A \in \mathbf{M}(F)$ is called bounded if there is a positive integer N such that $A_{i j}=0$ for $i>N$ or $j>N$ (see [4]). Denote by $\mathbf{B M}(F)$ the set of all bounded matrices in $\mathbf{M}(F)$. Then $\mathbf{B M}(F)$ is a semigroup under matrix multiplication. For each $k \in \mathbb{N}$, let $I(k) \in \mathbf{B M}(F)$ be such that

$$
(I(k))_{i j}= \begin{cases}1 & \text { if } i=j \in\{1, \ldots, k\} \\ 0 & \text { otherwise }\end{cases}
$$

Then for all $k, l \in \mathbb{N}, I(k) I(l)=I(l) I(k)=I(k)$ if $k \leq l$. It is clear that if $A \in \mathbf{B M}(F)$ and $N \in \mathbb{N}$ are such that $A_{i j}=0$ for $i>N$ or $j>N$, then $I(k) A=A I(k)=A$ for every $k \geq N$. It follows that $\mathbf{B M}(F)$ is a semigroup without identity. We have from [4] that $\mathbf{B M}(F)$ is also a regular semigroup. Hence $\mathbf{B M}(F)$ is a regular semigroup without identity. For $A \in \mathbf{B M}(F)$ and $k \in \mathbb{N}$, A is called k-right $[k$ left $]$ invertible if $A B=I(k)[B A=I(k)]$ for some $B \in \mathbf{B M}(F)$, and B is called a k-right $[k$-left $]$ inverse of A in $\mathbf{B M}(F)$. We observe that if $A \in \mathbf{B M}(F)$ has a
k-right [k-left] inverse in $\mathbf{B M}(F)$, then A has an infinitely many k-right [k-left] inverses in $\mathbf{B M}(F)$. Let B be a k-right $[k$-left $]$ inverse of A and $N \in \mathbb{N}$ such that $A_{i j}=0=B_{i j}$ for $i>N$ or $j>N$. Then $B_{i i}=0$ for all $i>N$. For $t>N$, define $B^{(t)} \in \mathbf{B M}(F)$ by

$$
B_{i j}^{(t)}= \begin{cases}1 & \text { if } i=j=t \\ B_{i j} & \text { otherwise }\end{cases}
$$

It is clear that $B^{(t)} \neq B^{(r)}$ for all distinct t, r greater than N and $A B^{(t)}=A B=$ $I(k)\left[B^{(t)} A=B A=I(k)\right]$ for all $t>N$.

Our purpose is to provide the following facts.
(1) For $\emptyset \neq \mathbf{P} \subseteq \mathbf{M}_{n}(F)$, the semihypergroup $\left(\mathbf{M}_{n}(F), \mathbf{P}\right)$ is regular if and only if \mathbf{P} contains an invertible matrix in $\mathbf{M}_{n}(F)$.
(2) For $\emptyset \neq \mathbf{P} \subseteq \mathbf{B M}(F)$, the semihypergroup $(\mathbf{B M}(F), \mathbf{P})$ is regular if and only if for every $k \in \mathbb{N}$, there are elements $A, B \in \mathbf{P}$ such that $I(k) A$ and $B I(k)$ are k-right invertible and k-left invertible in $\mathbf{B M}(F)$, respectively.

2 Main Results

In the remainder, F denotes any field. Recall that for $n \in \mathbb{N}, A, B \in \mathbf{M}_{n}(F)$, $A B=I_{n}$ implies that $B A=I_{n}$.

Theorem 2.1. Let $n \in \mathbb{N}$ and \mathbf{P} a nonempty subset of $\mathbf{M}_{n}(F)$. Then the semihypergroup $\left(\mathbf{M}_{n}(F), \mathbf{P}\right)$ is regular if and only if \mathbf{P} contains an invertible matrix in $\mathbf{M}_{n}(F)$.

Proof. Assume that $\left(\mathbf{M}_{n}(F), \mathbf{P}\right)$ is a regular semihypergroup. Then $I_{n} \in I_{n} \mathbf{P} C \mathbf{P} I_{n}$ for some $C \in \mathbf{M}_{n}(F)$. Thus $I_{n} \in \mathbf{P} C \mathbf{P}$ which implies that $I_{n}=A C B$ for some $A, B \in \mathbf{P}$, that is, $A(C B)=I_{n}$. Hence A is invertible in $\mathbf{M}_{n}(F)$.

For the converse, let \mathbf{P} has an invertible matrix in $\mathbf{M}_{n}(F)$, say A. To show that $\left(\mathbf{M}_{n}(F), \mathbf{P}\right)$ is a regular semihypergroup, let $B \in \mathbf{M}_{n}(F)$. Since $\mathbf{M}_{n}(F)$ is a regular semigroup, $B=B C B$ for some $C \in \mathbf{M}_{n}(F)$. Consequently,

$$
B=B A A^{-1} C A^{-1} A B=B A\left(A^{-1} C A^{-1}\right) A B \in B \mathbf{P}\left(A^{-1} C A^{-1}\right) \mathbf{P} B
$$

Theorem 2.2. For $\emptyset \neq \mathbf{P} \subseteq \mathbf{B M}(F)$, the semihypergroup $(\mathbf{B M}(F), \mathbf{P})$ is regular if and only if for every $k \in \mathbb{N}$, there are $A, B \in \mathbf{P}$ such that $I(k) A$ is k-right invertible and $B I(k)$ is k-left invertible in $\mathbf{B M}(F)$.

Proof. First, assume that $(\mathbf{B M}(F), \mathbf{P})$ is a regular semihypergroup and let $k \in \mathbb{N}$. Then $I(k) \in I(k) \mathbf{P} C \mathbf{P} I(k)$ for some $C \in \mathbf{B M}(F)$. Thus $I(k)=I(k) A C B I(k)$ for some $A, B \in \mathbf{P}$. This implies that $I(k) A$ is k-right invertible and $B I(k)$ is k-left invertible.

For the converse, assume that for every $k \in \mathbb{N}$, there are $A, B \in \mathbf{P}$ such that $I(k) A$ and $B I(k)$ are k-right invertible and k-left invertible in $\mathbf{B M}(F)$, respectively. To prove that $(\mathbf{B M}(F), \mathbf{P})$ is a regular semihypergroup, let $C \in \mathbf{B M}(F)$. Since $\mathbf{B M}(F)$ is a regular semigroup, $C=C D C$ for some $D \in \mathbf{B M}(F)$. Let $N \in \mathbb{N}$ be such that $C_{i j}=0$ if $i>N$ or $j>N$. Then $I(N) C=C I(N)=C$. It follows that $C=C I(N) D I(N) C$. By assumption, there are $E, F \in \mathbf{P}$ such that $I(N) E$ is N-right invertible and $F I(N)$ is N-left invertible in $\mathbf{B M}(F)$. Then $I(N) E K=$ $I(N)$ and $\operatorname{LFI}(N)=I(N)$ for some $K, L \in \mathbf{B M}(F)$. Consequently,

$$
\begin{aligned}
C=C I(N) D I(N) C= & C I(N) E K D L F I(N) C \\
& =C E(K D L) F C \in C \mathbf{P}(K D L) \mathbf{P C} .
\end{aligned}
$$

Hence the theorem is proved.

Remark 2.3. For $k \in\{1, \ldots, n\}$, let $I_{k} \in \mathbf{M}_{n}(F)$ be such that

$$
\left(I_{k}\right)_{i j}= \begin{cases}1 & \text { if } i=j \leq k \\ 0 & \text { otherwise }\end{cases}
$$

Then $I_{k} I_{n}=I_{n} I_{k}=I_{k}$ for all $k \in\{1, \ldots, n\}$. For $k \in\{1, \ldots, n\}$, k-right [k-left] invertible matrices in $\mathbf{M}_{n}(F)$ are defined analogously as in $\mathbf{B M}(F)$. If $A, B \in$ $\mathbf{M}_{n}(F)$ are such that $A B=B A=I_{n}$, then for every $k \in\{1, \ldots, n\}, I_{k}=$ $\left(I_{k} A\right) B=B\left(A I_{k}\right)$. Hence to be analogous to Theorem 2.2, Theorem 2.1 can be restated as follows : For $\emptyset \neq \mathbf{P} \subseteq \mathbf{M}_{n}(F)$, the semihypergroup $\left(\mathbf{M}_{n}(F), \mathbf{P}\right)$ is regular if and only if for every $k \in\{1, \ldots, n\}$, there is a matrix $A \in \mathbf{P}$ such that $I_{k} A$ is k-right invertible and $A I_{k}$ is k-left invertible in $\mathbf{M}_{n}(F)$.

Example 2.4. It is clear that if $\mathbf{P}=\{I(k) \mid k \in \mathbb{N}\}$, then by Theorem 2.2, $(\mathbf{B M}(F), \mathbf{P})$ is a regular semihypergroup.

Next, define $A_{k}, B_{k} \in \mathbf{M}(F)$ for $k \in \mathbb{N}$, by

$$
\begin{gathered}
A_{1}=B_{1}=I(1), \\
A_{2}=\left[\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots \\
& & \vdots & &
\end{array}\right], A_{3}=\left[\begin{array}{cccccc}
1 & 1 & 1 & 0 & 0 & \ldots \\
0 & 1 & 1 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots \\
& & \vdots & & &
\end{array}\right], \ldots \\
B_{2}=\left[\begin{array}{crrrrr}
1 & -1 & 0 & 0 & 0 & \ldots \\
0 & 1 & 0 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots \\
& & \vdots & & &
\end{array}\right], B_{3}=\left[\begin{array}{rrrrrr}
1 & -1 & 0 & 0 & 0 & \ldots \\
0 & 1 & -1 & 0 & 0 & \ldots \\
0 & 0 & 1 & 0 & 0 & \ldots \\
0 & 0 & 0 & 0 & 0 & \ldots \\
& & \vdots & &
\end{array}\right], \ldots
\end{gathered}
$$

Then $A_{1} B_{1}=I(1)=B_{1} A_{1}, A_{2} B_{2}=I(2)=B_{2} A_{2}, A_{3} B_{3}=I(3)=B_{3} A_{3}, \ldots$. It follows that $\left(I(k) A_{k}\right)\left(B_{k} I(k)\right)=\left(I(k) B_{k}\right)\left(A_{k} I(k)\right)=I(k)$ for all $k \in \mathbb{N}$. Hence by Theorem 2.2, if

$$
\mathbf{P}_{1}=\left\{A_{k} \mid k \in \mathbb{N}\right\} \text { and } \mathbf{P}_{2}=\left\{B_{k} \mid k \in \mathbb{N}\right\}
$$

then both $\left(\mathbf{B M}(F), \mathbf{P}_{1}\right)$ and $\left(\mathbf{B M}(F), \mathbf{P}_{2}\right)$ are regular semihypergroups.
Remark 2.5. For $\emptyset \neq \mathbf{P} \subseteq \mathbf{B M}(F)$, if $(\mathbf{B M}(F), \mathbf{P})$ is a regular semihypergroup, then \mathbf{P} must be an infinite set. To show this, suppose that \mathbf{P} is finite. Then there is a positive integer N such that $A_{i j}=0$ for all $A \in \mathbf{P}$ and $i>N$ or $j>N$. Let $k>N$ and $B \in \mathbf{B M}(F)$ be such that $I(k) \in I(k) \mathbf{P} B \mathbf{P} I(k)$. Then $I(k)=I(k) C B D I(k)$ for some $C, D \in \mathbf{P}$. By the property of $N, I(k) C=C$ and $D I(k)=D$. Thus $I(k)=C B D$. Since $D_{i k}=0$ for all $i \in \mathbb{N}$, it follows that $(C B D)_{k k}=\sum_{i \in \mathbb{N}}(C B)_{k i} D_{i k}=0$. It is a contradiction since $(I(k))_{k k}=1$.

References

[1] V. Camillo, F. J. Costa-Cano and J. J. Simón, Relating properties of a ring and its ring of row and column finite matrices, J. Algebra 244(2001), 435-449.
[2] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, Udine, 1993.
[3] I. Kaplansky, Fields and Rings, Chicago Lectures in Mathematics, The University of Chicago Press, 1969.
[4] F. Li, Regularity of semigroup rings, Semigroup Forum 53(1996), 72-81.
(Received 25 May 2006)
S. Chaopraknoi and N. Triphop

Department of Mathematics
Faculty of Science
Chulalongkorn University
Bangkok 10330, THAILAND.
e-mail: hs6mel@hotmail.com, nattanard.t@chula.ac.th

