Thai Journal of Mathematics Special Issue (Annual Meeting in Mathematics, 2006) : 7–11

Regularity of Semihypergroups of Infinite Matrices

S. Chaopraknoi and N. Triphop

Abstract: A semigroup S is a regular semigroup if for every $x \in S, x = xyx$ for some $y \in S$, and a semihypergroup (H, \circ) is a regular semihypergroup if for every $x \in H, x \in x \circ y \circ x$ for some $y \in H$. If S is a semigroup and P is a nonempty subset of S, we let (S, P) denote the semihypergroup (S, \circ) where $x \circ y = xPy$ for all $x, y \in S$. Let **BM**(F) be the multiplicative semigroup of all bounded $\mathbb{N} \times \mathbb{N}$ matrices over a field F where \mathbb{N} is the set of natural numbers. It is known that **BM**(F) is a regular semigroup. Our purpose is to provide necessary and sufficient conditions for a nonempty subset **P** of **BM**(F) so that (**BM**(F), **P**) is a regular semihypergroup.

Keywords : Regular semihypergroup, infinite matrix 2000 Mathematics Subject Classification : 20N20, 20M17, 20M99

1 Introduction

A semigroup S is called a *regular semigroup* if for every $x \in S, x = xyx$ for some $y \in S$.

By a hyperoperation on a nonempty set H is a function \circ from $H \times H$ into $P(H) \setminus \{\emptyset\}$ where P(H) is the power set of H, and (H, \circ) is called a hypergroupoid. For $A, B \subseteq H$, let $A \circ B = \bigcup_{\substack{a \in A \\ b \in B}} a \circ b$. A hypergroupoid (H, \circ) is called a semihyper-

group if $x \circ (y \circ z) = (x \circ y) \circ z$ for all $x, y, z \in H$. A hypergroup is a semihypergroup (H, \circ) satisfying the condition $H \circ x = x \circ H = H$ for all $x \in H$. We call a semihypergroup (H, \circ) a regular semihypergroup if for every $x \in H, x \in x \circ y \circ x$ for some $y \in H$. Hence every regular semigroup is a regular semihypergroup. Notice that if (H, \circ) is a hypergroup, then for every $x \in H, x \circ H \circ x = H$. This implies that every hypergroup is a regular semihypergroup.

Let S be a semigroup, P a nonempty subset of S and \circ the hyperoperation on S defined by $x \circ y = xPy$ for all $x, y \in S$. Then (S, \circ) is a semihypergroup ([2], page 11) and (S, \circ) will be denoted by (S, P). We note here that if S is a group, then (S, P) is a hypergroup, so it is a regular semihypergroup.

Let \mathbb{N} be the set of natural numbers (positive integers) and F a field. For

 $n \in \mathbb{N}$, let $\mathbf{M}_n(F)$ be the multiplicative semigroup of all $n \times n$ matrices over F. It is well-known that $\mathbf{M}_n(F)$ is a regular semigroup ([3], page 114) with identity I_n where I_n is the identity $n \times n$ matrix over F.

By an $\mathbb{N} \times \mathbb{N}$ matrix over F we mean an infinite matrix over F of the form

a_{11}	a_{12}	a_{13}	
a_{21}	a_{22}	a_{23}	
a_{31}	a_{32}	a_{33}	
	:		
L	•		_

and let $\mathbf{M}(F)$ be the set of all $\mathbb{N} \times \mathbb{N}$ matrices over F. We give a remark that associativity (AB)C = A(BC) can fail for $A, B, C \in \mathbf{M}(F)$ even when all products concerned make sense. The following example was given in [1]. Define $A, B, C \in \mathbf{M}(F)$ by

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots \\ 0 & 1 & 1 & 1 & \dots \\ 0 & 0 & 1 & 1 & \dots \\ \vdots & \vdots & & \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & \dots \\ 0 & 1 & -1 & 0 & 0 & \dots \\ 0 & 0 & 1 & -1 & 0 & \dots \\ \vdots & & \vdots & & & & \end{bmatrix}$$
$$C = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & \dots \\ -1 & 0 & 0 & 0 & \dots \\ -1 & -1 & 0 & 0 & \dots \\ -1 & -1 & -1 & 0 & \dots \\ \vdots & & & \vdots & & & \end{bmatrix}.$$

Then AB = BC = I, the identity $\mathbb{N} \times \mathbb{N}$ matrix over F. Thus $(AB)C = C \neq A = A(BC)$.

For a matrix A in $\mathbf{M}_n(F)$ or $\mathbf{M}(F)$, the entry of A in the $i^{\underline{th}}$ row and the $j^{\underline{th}}$ column will be denoted by A_{ij} . A matrix $A \in \mathbf{M}(F)$ is called *bounded* if there is a positive integer N such that $A_{ij} = 0$ for i > N or j > N(see [4]). Denote by $\mathbf{BM}(F)$ the set of all bounded matrices in $\mathbf{M}(F)$. Then $\mathbf{BM}(F)$ is a semigroup under matrix multiplication. For each $k \in \mathbb{N}$, let $I(k) \in \mathbf{BM}(F)$ be such that

$$(I(k))_{ij} = \begin{cases} 1 & \text{if } i = j \in \{1, \dots, k\}, \\ 0 & \text{otherwise.} \end{cases}$$

Then for all $k, l \in \mathbb{N}$, I(k)I(l) = I(l)I(k) = I(k) if $k \leq l$. It is clear that if $A \in \mathbf{BM}(F)$ and $N \in \mathbb{N}$ are such that $A_{ij} = 0$ for i > N or j > N, then I(k)A = AI(k) = Afor every $k \geq N$. It follows that $\mathbf{BM}(F)$ is a semigroup without identity. We have from [4] that $\mathbf{BM}(F)$ is also a regular semigroup. Hence $\mathbf{BM}(F)$ is a regular semigroup without identity. For $A \in \mathbf{BM}(F)$ and $k \in \mathbb{N}$, A is called k-right [kleft] invertible if AB = I(k) [BA = I(k)] for some $B \in \mathbf{BM}(F)$, and B is called a k-right [k-left] inverse of A in $\mathbf{BM}(F)$. We observe that if $A \in \mathbf{BM}(F)$ has a *k*-right [*k*-left] inverse in **BM**(*F*), then *A* has an infinitely many *k*-right [*k*-left] inverses in **BM**(*F*). Let *B* be a *k*-right [*k*-left] inverse of *A* and $N \in \mathbb{N}$ such that $A_{ij} = 0 = B_{ij}$ for i > N or j > N. Then $B_{ii} = 0$ for all i > N. For t > N, define $B^{(t)} \in \mathbf{BM}(F)$ by

$$B_{ij}^{(t)} = \begin{cases} 1 & \text{if } i = j = t, \\ B_{ij} & \text{otherwise.} \end{cases}$$

It is clear that $B^{(t)} \neq B^{(r)}$ for all distinct t, r greater than N and $AB^{(t)} = AB = I(k) [B^{(t)}A = BA = I(k)]$ for all t > N.

Our purpose is to provide the following facts.

- (1) For $\emptyset \neq \mathbf{P} \subseteq \mathbf{M}_n(F)$, the semihypergroup $(\mathbf{M}_n(F), \mathbf{P})$ is regular if and only if \mathbf{P} contains an invertible matrix in $\mathbf{M}_n(F)$.
- (2) For $\emptyset \neq \mathbf{P} \subseteq \mathbf{BM}(F)$, the semihypergroup $(\mathbf{BM}(F), \mathbf{P})$ is regular if and only if for every $k \in \mathbb{N}$, there are elements $A, B \in \mathbf{P}$ such that I(k)A and BI(k) are k-right invertible and k-left invertible in $\mathbf{BM}(F)$, respectively.

2 Main Results

In the remainder, F denotes any field. Recall that for $n \in \mathbb{N}$, $A, B \in \mathbf{M}_n(F)$, $AB = I_n$ implies that $BA = I_n$.

Theorem 2.1. Let $n \in \mathbb{N}$ and \mathbf{P} a nonempty subset of $\mathbf{M}_n(F)$. Then the semihypergroup $(\mathbf{M}_n(F), \mathbf{P})$ is regular if and only if \mathbf{P} contains an invertible matrix in $\mathbf{M}_n(F)$.

Proof. Assume that $(\mathbf{M}_n(F), \mathbf{P})$ is a regular semihypergroup. Then $I_n \in I_n \mathbf{P}C\mathbf{P}I_n$ for some $C \in \mathbf{M}_n(F)$. Thus $I_n \in \mathbf{P}C\mathbf{P}$ which implies that $I_n = ACB$ for some $A, B \in \mathbf{P}$, that is, $A(CB) = I_n$. Hence A is invertible in $\mathbf{M}_n(F)$.

For the converse, let **P** has an invertible matrix in $\mathbf{M}_n(F)$, say A. To show that $(\mathbf{M}_n(F), \mathbf{P})$ is a regular semihypergroup, let $B \in \mathbf{M}_n(F)$. Since $\mathbf{M}_n(F)$ is a regular semigroup, B = BCB for some $C \in \mathbf{M}_n(F)$. Consequently,

$$B = BAA^{-1}CA^{-1}AB = BA(A^{-1}CA^{-1})AB \in B\mathbf{P}(A^{-1}CA^{-1})\mathbf{P}B.$$

Theorem 2.2. For $\emptyset \neq \mathbf{P} \subseteq \mathbf{BM}(F)$, the semihypergroup $(\mathbf{BM}(F), \mathbf{P})$ is regular if and only if for every $k \in \mathbb{N}$, there are $A, B \in \mathbf{P}$ such that I(k)A is k-right invertible and BI(k) is k-left invertible in $\mathbf{BM}(F)$.

Proof. First, assume that $(\mathbf{BM}(F), \mathbf{P})$ is a regular semihypergroup and let $k \in \mathbb{N}$. Then $I(k) \in I(k)\mathbf{P}C\mathbf{P}I(k)$ for some $C \in \mathbf{BM}(F)$. Thus I(k) = I(k)ACBI(k) for some $A, B \in \mathbf{P}$. This implies that I(k)A is k-right invertible and BI(k) is k-left invertible. For the converse, assume that for every $k \in \mathbb{N}$, there are $A, B \in \mathbf{P}$ such that I(k)A and BI(k) are k-right invertible and k-left invertible in $\mathbf{BM}(F)$, respectively. To prove that $(\mathbf{BM}(F), \mathbf{P})$ is a regular semihypergroup, let $C \in \mathbf{BM}(F)$. Since $\mathbf{BM}(F)$ is a regular semigroup, C = CDC for some $D \in \mathbf{BM}(F)$. Let $N \in \mathbb{N}$ be such that $C_{ij} = 0$ if i > N or j > N. Then I(N)C = CI(N) = C. It follows that C = CI(N)DI(N)C. By assumption, there are $E, F \in \mathbf{P}$ such that I(N)E is N-right invertible and FI(N) is N-left invertible in $\mathbf{BM}(F)$. Then I(N)EK = I(N) and LFI(N) = I(N) for some $K, L \in \mathbf{BM}(F)$. Consequently,

$$C = CI(N)DI(N)C = CI(N)EKDLFI(N)C$$

= $CE(KDL)FC \in C\mathbf{P}(KDL)\mathbf{P}C.$

Hence the theorem is proved.

Remark 2.3. For $k \in \{1, \ldots, n\}$, let $I_k \in \mathbf{M}_n(F)$ be such that

$$(I_k)_{ij} = \begin{cases} 1 & \text{if } i = j \le k, \\ 0 & \text{otherwise.} \end{cases}$$

Then $I_k I_n = I_n I_k = I_k$ for all $k \in \{1, ..., n\}$. For $k \in \{1, ..., n\}$, k-right [k-left] invertible matrices in $\mathbf{M}_n(F)$ are defined analogously as in $\mathbf{BM}(F)$. If $A, B \in$ $\mathbf{M}_n(F)$ are such that $AB = BA = I_n$, then for every $k \in \{1, ..., n\}$, $I_k = (I_k A)B = B(AI_k)$. Hence to be analogous to Theorem 2.2, Theorem 2.1 can be restated as follows : For $\emptyset \neq \mathbf{P} \subseteq \mathbf{M}_n(F)$, the semihypergroup $(\mathbf{M}_n(F), \mathbf{P})$ is regular if and only if for every $k \in \{1, ..., n\}$, there is a matrix $A \in \mathbf{P}$ such that $I_k A$ is k-right invertible and AI_k is k-left invertible in $\mathbf{M}_n(F)$.

Example 2.4. It is clear that if $\mathbf{P} = \{ I(k) \mid k \in \mathbb{N} \}$, then by Theorem 2.2, $(\mathbf{BM}(F), \mathbf{P})$ is a regular semihypergroup.

Next, define $A_k, B_k \in \mathbf{M}(F)$ for $k \in \mathbb{N}$, by

$$A_1 = B_1 = I(1),$$

$$A_2 = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & & & \end{bmatrix}, A_3 = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & \dots \\ 0 & 1 & 1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ \vdots & & & & & \end{bmatrix}, \dots$$

$$B_{2} = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & \dots \\ 0 & 1 & 0 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & \end{bmatrix}, \quad B_{3} = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & \dots \\ 0 & 1 & -1 & 0 & 0 & \dots \\ 0 & 0 & 1 & 0 & 0 & \dots \\ 0 & 0 & 0 & 0 & 0 & \dots \\ \vdots & \vdots & \vdots & & \end{bmatrix}, \quad \dots$$

10

Then $A_1B_1 = I(1) = B_1A_1, A_2B_2 = I(2) = B_2A_2, A_3B_3 = I(3) = B_3A_3, \dots$ It follows that $(I(k)A_k)(B_kI(k)) = (I(k)B_k)(A_kI(k)) = I(k)$ for all $k \in \mathbb{N}$. Hence by Theorem 2.2, if

$$\mathbf{P}_1 = \{A_k \mid k \in \mathbb{N}\} \text{ and } \mathbf{P}_2 = \{B_k \mid k \in \mathbb{N}\},\$$

then both $(\mathbf{BM}(F), \mathbf{P}_1)$ and $(\mathbf{BM}(F), \mathbf{P}_2)$ are regular semihypergroups.

Remark 2.5. For $\emptyset \neq \mathbf{P} \subseteq \mathbf{BM}(F)$, if $(\mathbf{BM}(F), \mathbf{P})$ is a regular semihypergroup, then \mathbf{P} must be an infinite set. To show this, suppose that \mathbf{P} is finite. Then there is a positive integer N such that $A_{ij} = 0$ for all $A \in \mathbf{P}$ and i > N or j > N. Let k > N and $B \in \mathbf{BM}(F)$ be such that $I(k) \in I(k)\mathbf{P}B\mathbf{P}I(k)$. Then I(k) = I(k)CBDI(k) for some $C, D \in \mathbf{P}$. By the property of N, I(k)C = C and DI(k) = D. Thus I(k) = CBD. Since $D_{ik} = 0$ for all $i \in \mathbb{N}$, it follows that $(CBD)_{kk} = \sum_{i \in \mathbb{N}} (CB)_{ki}D_{ik} = 0$. It is a contradiction since $(I(k))_{kk} = 1$.

References

- V. Camillo, F. J. Costa-Cano and J. J. Simón, Relating properties of a ring and its ring of row and column finite matrices, J. Algebra 244(2001), 435–449.
- [2] P. Corsini, Prolegomena of Hypergroup Theory, Aviani Editore, Udine, 1993.
- [3] I. Kaplansky, *Fields and Rings*, Chicago Lectures in Mathematics, The University of Chicago Press, 1969.
- [4] F. Li, Regularity of semigroup rings, Semigroup Forum 53(1996), 72–81.

(Received 25 May 2006)

S. Chaopraknoi and N. Triphop Department of Mathematics Faculty of Science Chulalongkorn University Bangkok 10330, THAILAND. e-mail: hs6mel@hotmail.com, nattanard.t@chula.ac.th